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Cued Speech is a specific linguistic code for hearing-impaired people. It is based on both lip reading and manual gestures. In the
context of THIMP (Telephony for the Hearing-IMpaired Project), we work on automatic cued speech translation. In this paper,
we only address the problem of automatic cued speech manual gesture recognition. Such a gesture recognition issue is really com-
mon from a theoretical point of view, but we approach it with respect to its particularities in order to derive an original method.
This method is essentially built around a bioinspired method called early reduction. Prior to a complete analysis of each image
of a sequence, the early reduction process automatically extracts a restricted number of key images which summarize the whole
sequence. Only the key images are studied from a temporal point of view with lighter computation than the complete sequence.
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1. INTRODUCTION

Among the various means of expression dedicated to the
hearing impaired, the best known are sign languages (SLs).
Most of the time, SLs have a structure completely different
from oral languages. As a consequence, the mother tongue
of the hearing impaired (any SL) is completely different from
that which the hearing impaired are supposed to read fluently
(i.e., French or English). This paper does not deal with the
study and the recognition of SLs. Here, we are interested in a
more recent and totally different means of communication,
the importance of which is growing in the hearing-impaired
community: cued speech (CS). It was developed by Cornett
in 1967 [1]. Its purpose is to make the natural oral language
accessible to the hearing impaired, by the extensive use of
lip reading. But lip reading is ambiguous, for example, /p/
and /b/ are different phonemes with identical lip shape. Cor-
nett suggests (1) replacing invisible articulators (such as vo-
cal cords) that participate to the production of the sound by
hand gestures and (2) keeping the visible articulators (such as
lips). Basically, it means completing the lip reading with var-
ious manual gestures, so that phonemes which have similar
lip shapes can be differentiated. Thanks to the combination
of both lip shapes and manual gestures, each phoneme has a
specific visual aspect. Such a “hand and lip reading” becomes
as meaningful as the oral message. The interest of CS is to use
a code which is similar to oral language. As a consequence, it

prevents hearing-impaired people to have an under-specified
representation of oral language and helps them to learn to
verbalize properly.

The CS’s message is formatted into a list of consonant-
vowel syllables (CV syllables). Each CV syllable is coded by a
specific manual gesture and combined to the corresponding
lip shape, so that the whole looks unique. The concepts be-
hind cued speech being rather common, it has been extended
to several languages so far (around fifty). In this paper, we are
concerned by the French cued speech (FCS).

Whatever the CS, the manual gesture is produced by a
single hand, with the palm facing the coder. It contains two
pieces of information.

(i) The hand shape, which is actually a particular config-
uration of stretched and folded fingers. It provides in-
formation with respect to the consonant of the CV syl-
lable (Figure 1). In order to make the difference be-
tween the shape (as it is classically understood in pat-
tern recognition) and the hand shape (as a meaningful
gesture with respect to the CS), we call this latter a con-
figuration.

(ii) The location of the hand with respect to the face. This
location around the face is precisely defined by be-
ing touched by one of the stretched fingers during the
coding (the touching finger is called the pointing fin-
ger). Its purpose is to provide information about the
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Figure 1: French cued speech specifications: on the left, 5 different
hand locations coding vowels; on the right, 8 different hand shapes
coding consonants.

vowel of the CV syllable (Figure 1). In the same way,
it is necessary to make the difference between the mor-
phologic part of the face being touched by the pointing
finger and its semantic counterpart in the code. We call
the first pointed area and keep the word location for the
gesture itself.

Hand coding brings the same quantity of information as lip
shape. This symmetry explains why

(i) a single gesture codes several phonemes of different lip
shapes: it is as difficult to read on the lip without any
CS hand gesture, as it is to understand the hand ges-
tures without any vision of the mouth;

(ii) the code is compact: only eight configurations are nec-
essary for the consonant coding and only five locations
are necessary for the vowel coding. We add the config-
uration 0 (a closed fist) to specify the absence of cod-
ing, so that we consider a total of nine hand configura-
tions (Figure 1). The configuration 0 has no meaning
with respect to the CV coding and consequently it is
not associated with any location (it is classically pro-
duced by the coder together with the side location but
it has no interpretation in the code);

The presented work only deals with the automatic recog-
nition of FCS manual gestures (configuration and location).
Therefore, the automatic lip-reading functionality and the
linguistic interpretation of the phonemic chain are beyond
the scope of this paper. This work is included in the more
general framework of THIMP (Telephony for the Hearing
IMpaired Project) [2], the aim of which is to provide various
modular tools which bring telephone accessible to French
hearing-impaired people. To have an idea of the aspect of
FCS coding, see examples of videos at [3].

In addition to the usual difficulties for recognition pro-
cesses of dynamic sequences, CS has several particularities
which are the source of extra technical obstacles.

(i) The inner variations of each class for the configura-
tions are so wide that the classes intermingle with
each other. Hence, in spite of the restricted number of
classes, the recognition process is not straightforward.
The same considerations prevail for the location recog-
nition.

(ii) The hand is theoretically supposed to remain in a plan
parallel to the camera len, but in practice, the hand
moves and our method must be robust regarding mi-
nor orientation changes. In practice, this projection of
a 3D motion into a 2D plan is of prime importance
[4].

(iii) The rhythm of coding is really complicated as it is sup-
posed to fit the oral rhythm: in case of succession of
consonants (which are coded as CV with invisible vow-
els) the change of configuration is really fast. On the
contrary, at the end of a sentence, the constraints are
less strong and the hand often slows down. For a com-
plete study of the FCS synchronization, from the pro-
ductive and perceptive point of view of professional
coders, see [5].

(iv) From an image processing point of view, when a ges-
ture is repeated (there are twice the same location and
configuration), the kinetic clues indicating such a rep-
etition are almost inexistent.

(v) The finger which points the various locations around
the face (the pointing finger) depends on the configu-
ration performed at the same time. For instance, it is
the medium for configuration 3 and the index for con-
figuration 1.

(vi) Finally, some long transition sequences occur between
key gestures. They are to be dealt in the proper way. At
least some transition images can contain a hand shape
which really looks like any of the configurations by
chance, or equivalently, the pointing finger can cross
or point a peculiar pointed area which does not cor-
respond to the location of the current gesture: in the
corresponding state machine, some states are on the
path between two other states.

Knowing all these specifications, the problem is to as-
sociate a succession of states to each video sequence. The
possible states correspond to the cross product of five lo-
cations and eight configurations, plus the configuration 0
(which is not associated to any location to specify the ab-
sence of coding), which makes a total of forty-one possi-
ble states. Thus, the theoretical frame of our work is widely
addressed: the problem is to recognize a mathematical tra-
jectory along time. The methods we should implement for
our problem are likely to be inspired by the tremendous
amount of work related to such trajectory recognition prob-
lems (robotic, speech recognition, financial forecast, DNA
sequencing).

Basically, this field is dominated by graphical-based
methods under the Markov property [6–8] (hidden Markov
chain, hidden Markov model or HMM, Kalman filters,
particles filters). These methods are so efficient that their use
does not need to be justified anymore. Nonetheless, they suf-
fer from some drawbacks [9].
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(i) As the complexity of the problems increases, the mod-
els turn to become almost intractable.

(ii) To avoid such things, the models often lose in gener-
ality: the training sequence on which they are based is
simplified so that both the state machine and the train-
ing set have reasonable size.

(iii) The training is only made of positive examples, which
does not facilitate the discrimination required for a
recognition task.

(iv) They require enormous amount of data to be trained
on.

In practice, these technical drawbacks can lead to situations
in which the method is not efficient. With respect to our
application, difficult situations could materialize in several
manners. For instance,

(i) the succession of manual gestures will only be recog-
nized when performed by a specific coder whose inner
dynamism is learned as a side effect;

(ii) the improbable successions of manual gestures with
respect to the training datasets are discarded (which
leads to understand the trajectory recognition problem
on a semantic point of view which is far too sophisti-
cated for the phonetic recognition required at the level
we work in THIMP).

To avoid some of these drawbacks, several methods have
been submitted so far. For a complete review on the matter,
see [6].

For our problem, we could apply a method which fits the
usual scheme of the state-of-the-art. Image by image pro-
cessing permits to extract some local features, which are then
transmitted to a dynamical process which deals with the data
along time. However, we develop a method which is not
based on this pattern. The reasons are twofold.

First, it is very difficult to have meaningful data; even if
raising the interest of a part of the hearing impaired com-
munity, FCS is not that spread yet (it appeared in 1979, so
only the younger have been trained since their infancy). Con-
sequently, gathering enough sequences to perform complete
training with respect to the French diversity and the poten-
tial coding hand variety is very difficult. Moreover, to have a
proper coding which does not contain any noxious artifact
for the training, one must only target certified or graduated
FCS coders, who are very rare compared to the number of
various coders we need.

Secondly, from our expertise on the particular topic of
FCS gesture, we are convinced that thanks to the inner struc-
ture of the code, it is possible to drastically simplify the
problem. This simplification leads to an important save in
terms of computation. Such a saving is really meaningful for
THIMP in the context of the future global integration of all
the algorithms into a real-time terminal.

This simplification is the core of this paper and our main
original contribution to the problem. It is based on some
considerations which are rooted on the very specific struc-
ture of CS.

From a linguistic point of view, FCS is the complete vi-
sual counterpart of oral French. Hence, it has a comparable
prosody and the same dynamic aspect. From a gesture recog-

nition point of view, the interpretation is completely differ-
ent: each FCS gesture configuration + location is a static ges-
ture (named a phonemic target or PT in the remaining of the
paper) as it does not contain any motion and can be rep-
resented in a single picture or a drawing such as Figure 1.
Then, a coder is supposed to perform a succession of PTs. In
real coding, the hand nevertheless moves from PT to PT (as
the hand cannot simply appear and disappear) and transition
gestures (TGs) are produced.

We are interested in decoding a series of phonemes (CVs)
from a succession of manual gestures which are made of dis-
crete PTs linked by continuous transitions. We formulate in a
first hypothesis that PTs are sufficient to decode the continu-
ous sentence. As a consequence, complete TG analysis is most
of the time useless to be processed (with the saving in terms
of complexity it implies).We do not assess that TGs have no
meaning by themselves, as we do not want to engage the de-
bate on linguistic purposes. These transitions may carry a lot
of information such as paralinguistic clues or even be essen-
tial for the human brain FCS decoding task. But it is consid-
ered as not relevant here, as we focus on the message made
by the succession of PTs.

We also suppose in a second hypothesis that the differen-
tiation between TG and PT is possible thanks to low-level ki-
netic information that can be extracted before the complete
recognition process. This is motivated by the analysis of FCS
sequences. It shows that the hand is slowing down each time
the hand is reaching a phonemic target. As a consequence,
PTs are related to smaller hand motion than TGs. It nonethe-
less appears that there is almost always some residual motion
during the realization of the PT (because of the gesture coun-
terpart of the coarticulation).

These two hypotheses are the foundation of the early re-
duction: it is possible (1) to extract some key images via very
low level kinetic information, and (2) to apprehend a contin-
uous series of phonemes in a sequence thanks to the study of
a discrete set of key images.

The advantages of the early reduction are twofold: (1) the
computation is lighter as lots of images are discarded before
being completely analyzed; (2) the complexity of the dynam-
ical integration is far lower, as the size of the input data is
smaller. In this purpose of early reduction, we worked in [10]
to drastically reduce the number of input images by using the
inner structure and dynamic of the gestures we are interested
in. In this paper, we sum up and expand this analysis, while
linking it with other new works related to segmentation and
classification.

We develop a global architecture which is centered on the
early reduction concept. It is made of several modules. The
first one is made of the segmentation tools. We extract the
hand shape, its pointing finger, and we define the pointed
area of coding with respect to the coder’s face position in the
image. The second module performs the early reduction: its
purpose is to reduce the whole image sequence to the images
related to PTs. This is based on low-level kinetic informa-
tion. The third module deals with the classification aspect of
locations and configurations on each key image. This is sum-
marized in the functional diagram of Figure 2.
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[õ]
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Figure 2: Global architecture for FCS gesture recognition.

In Section 2, we present the image segmentation algo-
rithms required to extract the objects of interest from the
video. Section 3 is the core of the paper as the early reduction
is developed. The recognition itself is explained in Section 4.
Finally, we globally discuss the presented work in Section 5:
we develop the experimental setting on which the whole
methodology has been tested and we give quantitative results
on its efficiency.

2. SEGMENTATION

In this section, we rapidly cover the different aspects of our
segmentation algorithm for the purpose of hand segmenta-
tion, pointing finger determination, and pointed area defini-
tion. Pointed area definition requires face detection. More-
over, even if the position of the face is known, the chin, as the
lower border of the face, is really difficult to segment. As well,
the cheek bone has no strict borders to be segmented from a
low-level point of view. Hence, we define these pointed areas
with respect to the features which are robustly detectable on
a face: eyes, nose, and mouth.

2.1. Hand segmentation

As specified in the THIMP description [2], the coding hand is
covered with a thin glove, and a short learning process on the
color of the glove is done. This makes the hand segmentation
easier: the hand often crosses the face region, and achieving
a robust segmentation in such a case is still an open issue.
The glove is supposed to be of uniform but undetermined

color. Even if a glove with separated colors on each finger
[11] would really be helpful, we reject such a use, for several
reasons.

(i) Ergonomic reason: it is difficult for a coder to flu-
ently code with a glove which does not perfectly
fit the hand. Consequently, we want the coder to
have the maximum freedom on the choice of the
glove (thickness, material, color with respect to the
hair/background/clothes, size, etc.).

(ii) Technical reason: in the long term, we expect to be able
to deal with a glove free coder (natural coding). But
fingers without glove are not of different color so that
we do not want to develop an algorithm related to dif-
ferent colors in order to identify and separate fingers.
The glove’s presence has to be considered only as an
intermediate step.

With the glove, the segmentation is not a real prob-
lem anymore. Our segmentation is based on the study
of the Mahalanobis distance in the color space, between
each pixel and the trained color of the glove. Here fol-
lows the description of the main steps of the segmenta-
tion process. This process is an evolution of prior works
[12].

(1) Training: At the beginning of a video sequence,
the color of the glove is learned from a statistical
point of view and modeled by a 3D Gaussian model
(Figure 3). We choose a color space where luminance
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Figure 3: Projection in the YCbCr space of the modeling of the learning of the color of the glove.

0
0.05
0.1

0.15
0.2

50 100 150 200 250

0
0.2
0.4
0.6

50 100 150 200 250

0
0.2
0.4
0.6

50 100 150 200 250

Figure 4: Similarity map computation.

and chrominance pieces of information are separated
to cope better with illumination variations. Among all
the possible color spaces, we use the YCbCr (or YUV)
color space for the only reason that the transform from
the RGB space is linear, and thus, demanding less com-
putation resources.

(2) Similarity map: For each pixel, the Mahalanobis dis-
tance to the model of the color’s glove is computed.
It simply corresponds to evaluate the pixel p under
the Gaussian model (m, σ) (Figure 4), where m is the
mean of the Gaussian color model, and σ its covari-
ance matrix. We call the corresponding Mahalanobis
image the Similarity Map (SM). From a mathematical
point of view, the similarity map is the Mahalanobis
transform of the original image:

SM(p) = MTm,σ(p) for p ∈ Image

with MTm,σ(p) = 1− exp
(

(p −m)·σ·(p −m)′
2·det(σ)

)
,

(1)

where det (σ) is the determinant of the covariance ma-
trix σ .

(3) Light correction: On this SM, light variations are clas-
sically balanced under the assumption that the light
distribution follows a centered Gaussian law. For each

image, the distribution of the luminance is computed
and if its mean is different from the mean of the pre-
vious images, then it is shifted so that the distribution
remains centered.

(4) Hand extraction: Three consecutive automatic thresh-
olds are applied to extract the glove’s pixels from the
rest of the image. We develop here the methods for an
automatic definition of the thresholds.

(a) Hand localization: A first very restricting threshold
T1 is applied on the SM in order to spot the re-
gion(s) of interest where the pixels of the glove are
likely to be found (Figure 5(b)). This threshold is
automatically set with respect to the values of the
SM within the region in which the color is trained.
If m is the mean of the color model, and training
is the set of pixels on which the training was per-
formed,

T1 = 1
2
·
(
m +

maxTraining(SM)

minTraining(SM)

)
. (2)

(b) Local coherence: A second threshold T2 is applied
to the not-yet-selected pixels. This threshold is de-
rived from the first one, but its value varies with
the number of already-selected pixels in the neigh-
borhood of the current pixel p(x, y): each pixel in
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the five-by-five neighborhood is attributed a weight
according to its position with respect to p(x, y).
All the weights for the 25 pixels of the five-by-five
neighborhood are summarized in the GWM ma-
trix. The sum of all the weights is used to pon-
der the threshold T1. Practically, GWM is a ma-
trix which contains a five-by-five sampling of a 2D
Gaussian,

T2(x, y) = 3·T1
4
·
( 2∑
i=−2

2∑
j=−2

(
GWM(i, j)·Nbgrx,y(i, j)

))−1

(3)

with

Nbgrx,y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SM(x−2, y−2) · · · · · · · · · SM(x+2,y−2)
...

. . . . .
. ...

... SM(x, y)
...

... . .
. . . .

...
SM(x−2,y−1)· · · · · · · · ·SM(x+2, y+2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

GWM =

⎛⎜⎜⎜⎜⎜⎝
2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

⎞⎟⎟⎟⎟⎟⎠ ,

(4)

where SM(x, y) being the value for pixel p(x, y) in
SM. Such a method allows having a clue on the spa-
tial coherence of the color and on its local variation.
Moreover, this second threshold permits the pix-
els (the color of which is related to the glove one)
to be connected (Figure 5(c)). This connectivity is
important to extract a single object.

(c) Holes filling: A third threshold T3 is computed
over the values of SM, and it is applied to the not-
selected pixels in the fifteen-by-fifteen neighbor-
hood of the selected pixels. It permits to fill the
holes as a post processing (Figure 5(d)):

T3 = maxTraining(SM)

minTraining(SM)
− 0.1. (5)

2.2. Pointing finger determination

The pointing finger is the finger among all the stretched fin-
gers, which touches a particular zone on the face or around
the face in order to determine the location. From the the-
oretical definition of CS, it is very easy to determine which
finger is used to point the location around the coder’s face: it
is the longest one between those which are stretched (thumb
excluded). Then, it is always the medium but in case of con-
figurations, 0 (as there is no coding), 1 and 6 (where it is the
index). This morphologic constraint is very easy to translate
into an image processing constraint: the convex hull of the

(a) (b)

(c) (d)

Figure 5: (a) Original image, (b) first threshold (step 3), (c) second
threshold and postprocessing (d), third threshold and postprocess-
ing.

Figure 6: Pointing finger extraction from the convex hull of the
hand shape.

binary hand shape is computed and its vertex which is the
furthest from the center of palm and which is higher than the
gravity center is selected as the pointing finger (Figure 6).
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2.3. Head, feature, and pointed area determination

In this application, it is mandatory to efficiently detect the
coder’s face and its main features, in order to define the re-
gions of the image which correspond to each area potentially
pointed by the pointing finger. Face and features are robustly
detected with the convolutional face and feature finder (C3F)
described in [13, 14] (Figure 7). From morphological and ge-
ometrical considerations, we define the five pointed areas re-
quired for coding with respect to the four features (both eyes,
mouth, and nose) in the following way.

(i) Side: an ovoid horizontally positioned beside the face
and vertically centered on the nose.

(ii) Throat: a horizontal oval positioned under the face and
aligned with the nose and mouth centers.

(iii) Cheek bone: a circle which is vertically centered on the
nose height and horizontally so that it is tangent to
the vertical line which passes through the eye center
(which is on the same side as the coding hand). Its ra-
dius is 2/3 of the vertical distance between nose and
eyes.

(iv) Mouth: the same circle as the cheek bone one, but cen-
tered on the end of the lips. The end of the lips is
roughly defined by the translation of the eyes centers
so that the mouth center is in the middle of the so-
defined segment.

(v) Chin: An ellipse below the mouth (within a distance
equivalent to mouth center to nose center).

Despite the high detection accuracy [14], the definition
of the pointed areas varies too much on consecutive images
(video processing). Hence, the constellation of features needs
to be smoothed. In that purpose, we use a monodirectional
Kalman filter Figure 8 represented by the system of equations
S:

S :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(
xt+1 yt+1

dxt+1

dt

dyt+1

dt

)

=
(

Id(8) Id(8)

ZERO8×8 Id(8)

)
·
T(
xt yt

dxt
dt

dyt
dt

)
+ ∝ N

(
ZERO8×1, Id(8)

)
,

T(
Xt Yt

dXt

dt

dYt

dt

)

=
T(
xt yt

dxt
dt

dyt
dt

)
+∝ N

(
ZERO8×1, cov

(
dZ

dt

))
,

(6)
where

(i) xt and yt are the column vectors of the horizontal and
vertical coordinates of the four features (both eyes,
nose and mouth centres) in the image at time t and
Xt and Yt their respective observation vectors;

(ii) Id(i) is the identity matrix of size i, and ZEROi× j is the
null matrix of size i× j;

(iii) ∝ N (param1, param2) is a random variable which
follows a Gaussian law of mean param1 and of covari-
ance param2;

(iv) dZ/dt is a training set for the variability of the preci-
sion of the C3F with respect to the time.

(a) Convolutional Face and fea-
ture finder result [14]

(b) Pointed areas definition with
respect to the features

Figure 7: determination of the pointed areas for the location recog-
nition.
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Figure 8: Projection of each of the eight components of the output
vector of the C3F and the same projection after the Kalman filtering.
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3. EARLY REDUCTION
3.1. Principle
The early reduction purpose is to simplify the manual ges-
ture recognition problem so that its resolution becomes eas-
ier and less computationally expensive. Its general idea is to
suppress processing for transition images and to focus on key
images associated to PTs. The difficulty is to define the key
images prior to any analysis of their content. As we explained
in the introduction,

(i) images corresponding to PTs are key images in the
meaning that they are sufficient to decode the global
cued speech gesture sequence;

(ii) Around the instant of the realization of a PT, the hand
motion decreases (but still exists, even during the PT
itself) when compared to the TG.

The purpose of this section is to explain how to get low-level
kinetic information which reflects this motion variation, so
that the PTs instants can be inferred.

When coding, the hand motion is double: a global hand
rigid motion associated to location and a local nonrigid
fingers motion associated to configuration formation. The
global rigid motion of the hand is supposed to be related to
the trajectory of the hand gravity center. Such a trajectory is
represented in Figure 9, where each curve represents the vari-
ation of a coordinate (x or y) along time. When the hand re-
mains in the same position, the coordinates are stable (which
means the motion is less important). When a precise location
is reached, it corresponds to a local minimum on each curve.
On the contrary, when two consecutive images have very dif-
ferent values for the gravity center coordinates, it means that
the hand is moving fast. So, it gives very good understand-
ing of the stabilization of the position around PTs (i.e., the
motion decreases).

Unfortunately, this kinetic information is not accurate
enough. The reasons are twofold:

(i) when the hand shape varies, the number of stretched
fingers also varies and so varies the repartition of the
mass of the hand. As a consequence, the shape varia-

(a) During a transition no loca-
tion is pointed

(b) Closed wrist does not refer to any
position

Figure 10: Hand shapes with no pointing finger.

tions make the gravity center moving and looking un-
stable along time;

(ii) the hand gravity center is closer to the wrist (the joint
which rotates for most of the movement) than the
pointing finger, and consequently, some motions from
a position to another one are very difficult to spot.

As a matter of fact, the pointing finger position would be a
better clue for the motion analysis and PTs detection, but
on transition images as well as when the fist is closed, it is
impossible to define any pointing finger. This is illustrated
on the examples of Figure 10.

Thus, the position information (the gravity centre or the
pointing finger) is not usable as it is, and we suggest focusing
on the study of the deformation of the hand shape to get the
required kinetic information.

Because of the lack of rigidity of the hand deformation,
usual methods for motion analysis such as differential and
block matching methods [15] or model-based methods [16]
are not well suited. We propose to provide the early reduction
thanks to a new algorithm for motion interpretation based
on a bioinspired approach.

3.2. Retinal persistence

The retina of vertebrates is a complex and powerful system
(of which the justification of the efficiency roots in natural
selection process) and a large source of inspiration for com-
puter vision. From an algorithmic point of view [17], a retina
is a powerful processor, in addition, it is one of the most ef-
ficient sensors: the sensor functionality permits the acquisi-
tion of a video stream and a succession of various modules
processing them, such as explained in Figure 11. Each mod-
ule has a specific interest, such as smoothing the variations
of illumination, enhancing the contours, detecting, and ana-
lyzing motions.

Among all these processes, there is the inner plexiform
cells layer (IPL) filtering. It enhances moving edges, particu-
larly edges perpendicular to the motion direction. Its output
can easily be interpreted in terms of retinal persistence: the
faster an object goes in front of the retina, the blurriest the
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Video stream input

Outer Plexiform layer
Spatio temporal filter

Inner plexiform layer
High pass temporal filter

FFT
logpolar transformation

Oriented energy analysis

First step

Second step

Interpretation

Figure 11: Modeling of the global algorithm for the retina process-
ing [17].

(a) (b)

Figure 12: IPL output for (a) a potential target image (local mini-
mum of the motion), (b) a transition image (important motion).

(perpendicular to motion) edges are. Roughly, the IPL filter
can be approximated by a high-pass temporal filter, (as indi-
cated in Figure 11) but for more comprehensive description,
see [17].

By evaluating the amount of persistence at the IPL filter
output, one can have a clue on the amount of motion in front
of the retina sensor. This can be applied to our gesture recog-
nition problem. As shown in Figure 12, it is sensible to use
the retinal persistence to decide whether the hand is approx-
imately stable (it is likely to be a target) or not (it is likely to
be a transition).

Our purpose is to extract this specific functionality of the
retina and to pipeline it to our other algorithms in order to
create a complete “sensor and preprocessor” system which
meets our expectation on the dedicated problem of gesture
recognition: the dedicated retina filter .

3.3. Dedicated retina filter

The dedicated retina filter [9] is constituted of several ele-
ments which are chained together, as indicated in Figure 13.

(1) A video sensor. It is nothing more than a video camera.
(2) Hand segmentation, which has been described in

Section 4. At the end of the segmentation process, the
hand is rotated on each image so that on the global se-
quence, the wrist basis (which is linked to the forearm)
remains still. In this way, the global motion is sup-
pressed, and only the variation of shape is taken into
account.

(3) An edge extractor, which provides the contours of the
hand shape. It is wiser to work on the contour im-
age because, from a biological point of view, the eye is
more sensitive to edges for motion evaluation. As ex-
tracting a contour image from a binary image is rather
trivial, we use a simple subtraction operator [18]. The
length L of the closed contour is computed.

(4) A finger enhancer, which is a weighted mask applied to
the contour binary image. It makes the possible po-
sitions of the fingers with respect to the hand more
sensitive to the retinal persistence: as the changes in
the hand shape are more related to finger motions that
palm or wrist motion, these latter are underweighted
(Figure 14(a)). The numerical values of the mask are
not optimized, and there is no theoretical justification
for the choice of the tuning described in Figure 14(b).
This is discussed in the evaluation part.

(5) A smoothing filter, which is a 4 operations/byte approx-
imation of a Gaussian smoother [17]. Such a filter ap-
pears at the retina preprocessing to the IPL.

(6) The inner plexiform layer (IPL) itself, which has already
been presented in the previous paragraph 3.2 as the
core of the retinal persistence.

(7) A sum operator, which integrates the output of the IPL
filter in order to evaluate the “blurriness” of the edges,
which can directly be interpreted as a motion energy
measure. By dividing it by the edge length, we obtain
a normalized measure which is homogenous with a
speed measure:

Motion Quantification
(
framet

)
= 1

L
·
∑
x,y

IPL outputt(x, y), (7)

where framet represents the current tth image, L repre-
sents the length of the contour of the shape computed
in the edge extractor module, and IPL outputt(x, y)
represents the value of the pixel (x, y) in the image re-
sult of the processing of framet by modules (0) to (5)
of the dedicated retina filter.

3.4. Phonemic target identification

The motional energy given as output of the dedicated retina
filter is supposed to be interpreted as follows: at each time
t, the higher the motional energy is, the more the frame at
time t contains motion, and vice versa. On Figure 15, each
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(1) Hand
segmentation

(2) Edge
extraction

(3) Finger
enhancer

(4) Smoothing
filter

(5) IPL
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Figure 13: Dedicated retina filter functional diagram.

(a) grayscale representation of
the weight mask (the darker the
gray, the lower the weights)

Upper part: square root evolution of the weight

w(x, y) along the (Y max .−→y + X max .−→x /2) vector.

w(x, y) = 0.5 if y = 0

w(x, y) = 1 if (x, y) = (X max,Y max)

Lower part: linear evolution of the weight w(x, y)

along the y vector.

w(x, y) = 0 if y = 0

w(x, y) = 0.5 if y = Y max /2

(b) Expression of the mask for each pixel p(x, y).
The lower left-hand corner is the reference, and
(Xmax,Ymax) are the dimensions of the image

Figure 14: Weight mask for the finger enhancement.

minimum of the curve is related to a slowing down or even a
stopping motion. As the motion does not take into account
any translation or rotation, which are global rigid motion,
the amount of motion only refers to the amount of hand-
shape deformations in the video (fingers motion).

Hence, any local minimum in the curve of Figure 15 cor-
responds to an image which contains less deformation than
the previous and next images: such an image is related to the
notion of PTs as defined above. Unfortunately, even if the re-
lation is visible, the motional energy is too noisy a signal to

allow direct correspondence between the local minima and
the PTs: the local minima are too numerous.

Here are the reasons of such noisiness.
(i) A PT is defined from a phonemic point of view which

is a high-level piece of information: whatever the man-
ner the gesture is made, it remains a single PT per
gesture. On the contrary, a local minimum in the
motion can have several origins: the motion may be
jerked, or the gesture may require several accelera-
tions and decelerations for morphologic reasons; it is
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Figure 15: Dedicated retina filter output: the normalized motional
energy per image along time.
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Figure 16: The filtered dedicated retina output.

simply related to the kind of motion (speed, acceler-
ation, jerk) and it is a very low-level piece of infor-
mation. Consequently, several such instants in which
a relative stability is measured can appear in a single
gesture. These instants must be filtered in order to keep
only the ones which are likely to have a higher level of
interpretation.

(ii) Because of the nature of the dedicated retina filter (es-
pecially the IPL filter), its output is noisy (there are lots
of local minima of no meaning from a phonetic point
of view).

(iii) Any mistake in the previous processing can also lead to
unjustified local minima (noise in the segmentation,
relative sensitivity of the captor to lighting variations,
approximation of considering the motion as planar,
etc.).

For all these reasons, it is impossible to simply associate lo-
cal minima to PTs. On the contrary, it appears from com-
mon sense that any image which really corresponds to a PT
is a local minimum. This is confirmed by experiments (see
Section 5). Finally, the set of all the local minima is too big
to be associated to the set of the phonemic targets, but con-
tains it. We consider the set of local minima as a first step of
the early reduction, and the corresponding images are con-
sidered as targets of a very low level called KT1 (which stands
for kinetic target of type 1) on which set of targets of higher
level will be defined.

The point is now to define a set of KT2 based on the set
of KT1, (in which all the useless KT1 has been removed, and
in which no PT is missing). For that purpose, the motion en-
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Figure 17: A zone of stability (in green bold) determined by hys-
teresis cycle. Its minimum value corresponds to its representing
KT3.

ergy is filtered, so that the small variations are smoothed and
the important variations are enhanced (Figure 16). The re-
maining KT1 on the filtered motional energy curve are con-
sidered as KT2. To perform such a filtering, we use a series of
convolutions with the following kernel ItKe:

ItKe = (0.1 0.2 0.4 0.2 0.1). (8)

After each iteration, the remaining local extrema are set back
to their original values, so that only the small variations are
suppressed. In practice, three iterations are sufficient.

The KT2 images are images which potentially correspond
to the PTs, but they still remain too numerous. The next step
of the reduction is to define an equivalence class for all the
KT2 which correspond to the same gesture. The difficulty is
to group the images of the same gesture without analyzing
the images of the sequence.

To create these equivalence classes, we simply group the
consecutive images together, under the hypothesis that any
change of gesture leads to an important amount of retinal
persistence. As soon as the motional energy becomes too
high (higher than Inf Tresh), the gesture is supposed to be
not stable enough any more (one leaves the previous equiva-
lence class of stable images). As soon as the motional energy
becomes small enough (smaller than SupTresh) the gesture
is supposed to be approximately stable back and enter a new
class of images considered as being equivalent (Figure 17).
SupTresh must be higher than Inf Tresh (it defines a hysteresis
cycle) to take into account the delay induced by the temporal
filtering of the IPL.

If the thresholds are not properly set, two kinds of error
can appear. We call error of type 1 a transition which is not
spotted; in such a case the previous gesture and next gesture
are merged together. We call error of type 2 a transition which
is detected whereas none occurs; in such a case, a gesture is
split into two. As a matter of fact, errors of type 2 are really
easy to correct. Then, it is not necessary for the thresholds to
be precisely tuned, as long as they prevent any error of type 1.
That is why we have roughly and manually selected them to
the value of 30% and 40% of the maximum values reachable
by the motional energy (which is 0.1): Inf Tresh = 0.03 and
SupTresh = 0.04.
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Figure 18: Examples from KT3 images for classes 0 to 8, respec-
tively.

Once the equivalence classes of KT2 are defined, the most
representative KT2 element of each class (the one which has
the lowest motional energy value among the equivalence
class) is defined as KT3, the kind of kinetic targets of the
highest level of interpretation: the early reduction purpose
is to define KT3s which are as closed as possible to the theo-
retical PTs.

To correct an error of type 2, it is sufficient to compare
the result of the recognition for each KT3 (i.e., after the
recognition stage which is described in the next section). If
consecutive KT3s are recognized as containing the same con-
figuration, it has two possible meanings:

(i) two identical configurations have been produced in
two PTs, no mistake has been made;

(ii) a single PT has been cut in two by mistake and a single
configuration has provided two KT3s.

To make the difference between these two cases, it is suf-
ficient to process the single TG image which corresponds to
the local maximum (the image of maximum motion) be-
tween the two considered KT3s. If the same hand shape is
recognized during the TG, it means that a single PT has
been artificially cut into two. In addition to all the RT3 im-
ages, some TGs images are processed (their number obvi-
ously varies, as it is discussed in Section 5).

The interests of using a hierarchical definition for the KTs
(KT1s, KT2s, and KT3s) instead of using a direct method to
extract KTs which correspond to PTs are manifold.

(i) Stronger reduction: we have got the following relation-
ship which must be enforced:

{KT3s} ⊆ {KT2s} ⊆ {KT1s}. (9)

Then, by explicitly defining intermediate level of KTs,
we pedagogically explain that the target images must
be recognized as such at various levels of interpre-
tation. For example, several local minima after the
smoothing by the ItKe kernel are not in KT2s, whereas
they fulfil the other conditions: they do not belong to
KT1s because of the nonzero phase of the convolu-
tional filter.

(ii) Computation resources: the definition of intermediate
KTs allows recognizing fewer images for the definition
of equivalence classes with respect to the gesture con-
tained in the image.

(iii) Extension to future works: in our future work we ex-
pect to automatically spot. Some of the mistakes due
to the system. Then, a hierarchical definition of targets
of various levels of interpretation would allow correct-
ing them more easily by descending the level of inter-
pretation.

4. HAND-SHAPE CLASSIFICATION

In this section, we are interested in the classification of a KT3
image. Working on KT3 simplifies the recognition task for
two reasons.

(i) For each zone of stability that corresponds to an equiv-
alence class for the KT2, all the images have their hand
shape recognized through the recognition of the single
corresponding KT3.

(ii) The configurations to recognize are fully realized on
PTs. So, there is less variance to take into account, and
the classes are well defined and bounded (in opposi-
tion to when transitions are taken into consideration).

Figure 18 is an example of the kind of images that are ob-
tained in the KT3 set, and which are likely to be classified.
Some images represent imperfect gestures, such as the exam-
ples of configurations 3 and 4. As explained in Section 2, by
nature of FCS, the hand shapes obtained are prone to numer-
ous artefacts which complicate the classification task. KT3
images are more stable, but this stability remains relative.

4.1. Preprocessing: the wrist removal

The wrist is a source of variation: (1) it is a joint the shape of
which varies, and (2) its size varies with the glove. Hence, one
does not want to perform any learning on it, and we simply
remove it. We define the wrist as the part of the hand which is
under the palm (Figure 19). We define the palm as the biggest
inner circle of the hand. We find it via a distance transform
which is computed over the binary image coming from the
segmentation step. The purpose of the distance transform is
to associate to each pixel of an object in the binary image a
value which corresponds to the Euclidian distance between
the considered pixel and the closest pixel belonging to the
background of the image. For morphological reasons [19],
the center of the palm is the point of the hand the value of
which is the highest in the corresponding distance transform
image (Figure 19).

4.2. Attributes definition

Several image descriptors exist in the image compression lit-
erature [20]. We focus on Hu invariants, which are successful
in representing hand shapes [4]. Their purpose is to express
the mass repartition of the shape via several inertial moments
of various orders, on which specific transforms ensure invari-
ance to similarities. Centered inertial moments are invariant
to translation. The moment mpq of order p + q is defined as

mpq =
∫∫

x y

(
x − x

)p(
y − y

)q
δ(x, y) dx dy. (10)

With x and y being the coordinates of the gravity center of
the shape and δ(x, y) = 1 if the pixel belongs to the hand
and 0 otherwise. The following normalization makes them
invariant to scale:

npq =
mpq

m00
(p+q)/2+1 . (11)
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(a) (b) (c)

Figure 19: grayscale representation (the lighter the gray, the further from the border) of the distance transform of a stretched hand (the edge
of each finger appears), and the use of such a transform applied to remove the wrist on a peculiar hand shape (b, c).

Then, we compute the seven Hu invariants, which are invari-
ant to scale and rotation [4, 20].

S1 = n20 + n02,

S2 =
(
n20 + n02

)2
+ 4·n2

11,

S3 =
(
n30 − 3·n12

)2
+
(
n03 − 3·n21

)2
,

S4 =
(
n30 + n12

)2
+
(
n03 + n21

)2
,

S5 =
(
n30 − 3·n12

)·(n30 + n12
)

·((n30 + n12
)2 − 3·(n03 + n21

)2)− (n03 − 3·n21
)

·(n03 + n21
)·(3·(n30 + n12

)2 − (n03 + n21
)2)

,

S6 =
(
n20 + n02

)·((n30 + n12
)2 − (n03 + n21

)2)
+ 4·n2

11·
(
n30 + n12

)·(n03 + n21
)
,

S7 =
(
3·n21 − n03

)·(n30 + n12
)·((n30 + n12

)2

− 3·(n03 + n21
)2)− (n30 − 3·n12

)·(n03 + n21
)

·(3·(n30 + n12
)2

+
(
n03 + n21

)2)
.

(12)

4.3. Classificationmethodology

For the classification itself, we use support vector machines
(SVMs) [21]. SVMs are binary classification tools based on
the computation of an optimal hyperplane to separate the
classes in the feature space. When the data are not linearly
separable, a kernel function is used to map the feature space
into another space of higher dimension in which the separa-
tion is possible. We use the following.

(i) “One versus one” methodology for the multi-
classification aspect. It means that to deal with mul-
tiple classes, one uses a SVM per pair of classes, and
the final classification is derived from the result of all
the binary classifications.

(ii) A voting procedure: each SVM gives a vote to the
class it selects and the final classification is achieved by
choosing the class which gatheres the highest score.

(iii) The C-SVM algorithm [22].

(iv) Sigmoid kernels, in order to transform the attribute
space so that it is linearly separable.

5. DISCUSSION ON THE OVERALLMETHOD

In order to evaluate the algorithms presented in this paper,
we mainly use a specific corpus which corresponds to a sin-
gle experiment campaign. Its conditions of acquisition per-
fectly fit the general situation which our system is supposed
to work on. Consequently, it is used to test all the algorithms.
Sometimes, this setting is not sufficient to make all the eval-
uations and we use some other experiments in parallel which
are dedicated to a peculiar algorithm (segmentation, classifi-
cation, etc.). The first main data collection is described in the
first paragraph. In the following paragraphs, each algorithm
is evaluated with respect to this main corpus. If additional
minor datasets are required, they are described in the corre-
sponding paragraph.

5.1. Experimental setting and data collection

The main data collection deals with a corpus of 267 sentences
of very uninteresting (or inexistent) meaning, but with the
particularity of presenting all the potential transitions among
the French phonemes. This lack of clarity leads to a coding
which is not perfectly fluent, as there are some hesitations,
or mistakes, which are finally also present in an unprepared
talk. The sentences are long from five to twenty-five syllables
and have elaborated structures. No learning is performed on
their semantic level, so that the power of generalization of
this dataset is complete: any new sentence acquired in the
same conditions is processed in a similar way and gives sim-
ilar result. Consequently, the mere content of the corpus in
terms of linguistic meaning is not as important as the other
variation factors (coder, lightening conditions, camera qual-
ity, etc.), which may have far more consequences.

The coder is a native French female, certified for FCS
translation, and working regularly as a translator (in schools,
meetings, etc.). She codes in a sound-proof room, with pro-
fessional studio lightening conditions, sitting in front of
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a camera, and using the thin black-silk glove she usually used
to protect her hands from cold (consequently, the glove is re-
ally chosen up to the coder). This is the first time she uses
a glove for a coding acquisition, and after a short warm up,
she is not bothered anymore by its presence. It appears that
the glove color is very close to the coder’s hair. In order to as-
sess the choice of the glove with respect to (1) the comfort of
its use, (2) its colour for segmentation purpose, (3) the diffi-
culty of recognizing a badly chosen glove, we also made few
acquisitions with a thick blue glove which is two sizes too big
for the coder’s hand.

The acquisition is made at 25 images/second with a pro-
fessional analogical camera of the highest quality. Then, the
video is digitalized. Frames A and B are separated and each
is used to recreate a complete image thanks to a mean inter-
polation process. Finally the video rate is 50 images/second,
with the lowest quality, which is not a disturbance, as the
original one is high enough to allow such a loss.

5.2. Hand-segmentation evaluation

For the evaluation of the hand segmentation process, we
made the choice of using a qualitative approach defined in
the following way: the hand is correctly segmented if the
global shape is preserved in the sense that a human expert
is able to recognize the right configuration. So segmentation
“errors” such as small extension, border suppression, back-
ground fingers missing are not considered (Figures 20(a) and
20(c)). On the contrary, if a small mistake modifying the
shape is observed, the segmentation is considered as mis-
lead (Figures 20(b) and 20(d)). We do not consider an auto-
matic and quantitative evaluation of the hand segmentation
by comparing our results with a ground truth as our main
goal is configuration recognition and not only hand segmen-
tation.

The accuracy is defined as follows: for each video se-
quence, we count the proportion of images which are con-
sidered as correctly segmented (with respect to the previous
conditions). With such a definition of the accuracy, the re-
sults for each sentence of the main corpus are the following:
the lowest accuracy is 95.8% and the highest 100% with a
mean of 99.4% on 1162 images. These results are equivalent
with other gloves under the same conditions of acquisition:
yellow glove (99.56%) and bright pink glove (98.98%), but
the number of images for the test is less important. Concern-
ing lower quality acquisition, it is really difficult to assess a
score as it is far more depending on the conditions (light-
ening, glove, etc.). As an example, the result of Figure 5 is
obtained with a portable digital camera in a classroom lit by
the sun and with no particular constraint. Finally, the results
are not corrupted by the addition of a salt and pepper noise
of 60%. This result is not surprizing as the color is mod-
eled by a Gaussian and the image smoothed by convolutions
(Figure 21).

As we expect our segmentation to be accurate enough
to provide precise descriptors to the recognition process, an-
other mean to evaluate the efficiency of the segmentation is
to consider the accuracy of the classification process: so long

(a) the border is not accurate and the unstretched fin-
gers are missing but the segmentation is still good

(b) Wrong segmen-
tation: a ginger is
missing

(c) the segmentation is not accu-
rate, but the general shape is re-
spected

(d) Wrong segmen-
tation due to the sim-
ilarity between the
hair and the glove

(e) influence of the back-
ground with respect to to
the precision of the border

(f) Bad training consequence (g) Bad training consequence

Figure 20: litigious segmentation illustration.
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Figure 21: Segmentation of a noisy image (60% salt and pepper
noise).

as this latter is efficient enough, it is not necessary to improve
the segmentation.

Despite the number of steps (the error rates of which cu-
mulate each other) involved in the extraction of the hand,
our experiments have shown the good efficiency of this mod-
ule.

We perform other acquisitions, with various webcam or
intermediate quality digital cameras, and various gloves, in
order to determine the robustness of the method with re-
spect to the equipment. Of course, the quality of the results
is somehow related to the quality of the camera. From our
expertise, most of the errors are due to

(i) a too low shutter speed on the camera which leads to
some images on which the fingers are blurred;

(ii) unwise choice of the color of the glove (it is more dif-
ficult to segment it when its color is closed to the color
of an element of the background, to the skin color, or
to the color of the hair);

(iii) bad color sensors, which prevent any color discrimina-
tion;

(iv) too dark gloves are difficult to segment as only the lu-
minance of the pixel is meaningful. On the other hand,
too light gloves are more sensitive to light variation
and shadow effects (Figure 5). Intermediate colors are
more efficient: luminance and chrominances are useful
for the discrimination and shadows effects are dealt by
the multiple thresholding;

(v) texture of the surrounding or background: because of
the heavy use of convolution filter in the segmentation
process, the border of the hand is not as accurate in
case of textured area around it (Figure 20(e));

(vi) if the training step is not accurately performed, the
segmentation results quality drastically decreases. We
think an ergonomic study might be necessary to pro-
vide a convenient interface which ensures the coder
who is not familiar with the program to have his/her
glove well learned (Figures 20(f) and 20(g)). Of course,
such a study is beyond the scope of scientific research
and is of greater concern for a commercial application.

(a) The wrist is flexed: the
other fingers appear shorter
than they are with respect to
the thumb

(b) The medium is not as parallel as the
index with respect to the camera plan.
Thus, the longest finger appears to be
the index

Figure 22: Deformations of the hand which lead to a wrong deter-
mination of the pointing finger.

5.3. Pointed area and pointing finger evaluation

Practically, the definition of the pointed areas works effi-
ciently. It is possible to evaluate the interest of the pointed
areas with respect to their morphology for the coding task: it
is actually interesting to check whether the chin is efficiently
detected by the corresponding ellipse, (and for the mouth
or the cheek bone as well) independently from the position
of the pointing finger during the realization of a gesture. To
do so, we applied our algorithm to 82 images of the BioID
database [23]. It appears from this test that all the defined
pointed areas give satisfactory results, but the area related to
the chin remains less accurate than the others (due to the
presence of beard, and the opening of the jaw). We do not
provide accuracy rates, as there is no objective ground truth.
On the contrary, we provide litigious cases (see Figure 23).
The interesting point is that once this algorithm is coupled
with its counter part on lip reading (a work lead by another
team of THIMP), the mouth contour will be accurately seg-
mented and it will improve mouth and chin detection as a
side effect.

As shown on Figure 8 the coordinates of each feature are
far more stable after being processed by the Kalman filter.
Consequently, the pointed areas defined above are also more
stable.

Concerning the pointing finger determination, the ac-
curacy score is between 99% and 100% depending on the
sentences of the corpus, (with a mean of 99.7%), so long
as the hand perfectly remains in the acquisition plan. Oth-
erwise, because of parallax distortions, the longest finger on
the video is not the real one, as illustrated in Figure 22. As we
expect the code to be correctly done, the images with parallax
distortions are not taken into account in this evaluation.

5.4. Early reduction evaluation

PT definition. The PTs are only defined with respect to the
change of configuration, and not with respect to the change
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Figure 23: various litigious case from BioID database.

of location. It intuitively leads to a problem: when two con-
secutive gestures have the same configuration but different
locations, a single PT should be detected and the other one
should be potentially lost. In practice, there is a strong cor-
relation on hand-shape deformation and global hand posi-
tion, so it does not to occur too often: its proportion with
respect to the other mistakes is not big enough to be quan-
tified at the level of a phonemic evaluation of the system.
On the contrary, it may lead to global inconsistencies for
higher-level interpretation, such as complete sentence decod-
ing. (Section 5.7).

The finger enhancer: The mask is manually set to corre-
spond to the general pattern represented in (Figure 14(a)). In
order to decide whether to use it or not, we simply qualita-
tively compare the output of the dedicated retina filter when
it processes brute or enhanced data. As the results of the early
reduction seem more adapted with than without the finger
enhancer, it is kept with no longer optimization (although
we concede that it could be optimized, there is no need for it
at the moment).

KT selection. We have set a hierarchical definition of three
types of kinetic targets. The last type of targets is associated
to zones of stability (relative minimum in the motion) which
are supposed to correspond to the full realization of gestures.
The average proportion of images in a sequence which are
KT1s is 40%. The proportion of the images in the sequence
which are KT2 is between 25% and 30%, depending on the

rhythm of coding, and this proportion is between 6% and
12% for KT3.

PTs are included in KT1 and KT2. From our experiments,
this is true in more than 98% of the cases: the extremely rare
errors are due to a very bad coding in which the correspond-
ing gesture is not performed until its end, but completely
smashed by the next gesture so that it appears as a transitive
phenomenon. As these very few errors are not due to a failure
of the algorithm, but to a bad coding, they are removed from
the corpora for the evaluation. Concerning the error rate for
KT3s, it is a bit more complicated, as there are two types of
error (type 1 and type 2).

The rate of errors of type 1 (RT1%) is evaluated by an ex-
pert, and consequently is expert-dependent: it is based on the
evaluation of stability by the visual perception of the expert.
For each gesture the expert check that the selected set of im-
ages does not contain any motion; the configuration and the
location must not change. From our experiments, RT1% ≈
4%. Errors are most of the time due to an odd rhythm in
the coding, which breaks the kinetic assumptions implicitly
made in the way the motional energy is processed.

The rate of errors of type 2 (RT2%) is much higher just
before the recognition step, but as they are dealt with later on,
their number is not evaluated at this level. After the recog-
nition step, these errors are dealt with, at the price of the
addition of some TGs, which are processed until the recog-
nition level. Then in addition to all the KT3 images, some
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TGs images are processed (their number varies from zero to
the number of KT3s). It leads to a total number of images,
which is 13% to 18% of the total number of frame in the se-
quence. Of course, it is wiser to add some other images to
prevent that any mistake has too large consequences. Practi-
cally, we found that the results do not improve if we process
more than 25% of the images of the whole video. Eventually,
this improvement in the robustness of the detection is cor-
related with more fake alarms, which finally annihilates the
interest of using too many images. As a consequence, it vali-
dates a-posteriori the interest of the early reduction.

As long as no mistake is made at the recognition level,
100% of the errors of type 2 are properly adressed by consid-
ering the appropriate TGs. Hence, RT2% is directly related to
the error rate of the recognition module (which is developed
in the next section).

Concerning the identification of PTs by KT3s, the accu-
racy is really high from a gesture point of view, as we reach
89% to 100% depending on the sentences, with a mean of
93%. Nonetheless, these results must be cautiously inter-
preted, as they do not deal with the synchronization with
“the pointing of the location gesture,” and as the ground
truth is specified for each PT. Hence, the results, although
they are an important improvement, are still far from com-
plete sentences recognition.

5.5. Classification evaluation

We use the LIBSVM library [22] for the implementation of
the SVM algorithm. Thanks to a tenfold cross-validation, the
classification parameters described above are set: the cost pa-
rameter is set to 100 000 and termination criterion to 0.001.
The sigmoid kernel is

Kerγ,R(u, v) = tanh
(
γ·uT·v + R

)
with γ = 0.001,R = −0.25.

(13)

To evaluate the methodology (attributes and classifier se-
lection, classification parameter tuning), we perform the fol-
lowing experiment: a hand-shape database is derived from
our main dataset of FCS videos. The transition shapes are
eliminated manually and the remaining shapes are labelled
and stored in the database as binary images representing the
nine configurations (Figure 18).

The training and test sets of the database are formed
such that there is no strict correlation between them. Thus,
two different corpuses are used in which a single coder is
performing two completely different sets of sentences using
Cued Speech. The respective distributions of the two corpora
are given in Table 1. The statistical distribution of the config-
urations is not balanced at all within each corpus. The rea-
son of such a distribution is related to the linguistics of cued
speech.

For each image, the real labels are known. Thus, we use
the following definition of the accuracy to evaluate the per-
formance of the classifier:

Accuracy = 100·Number Of Well Classified Items
Total Number Of Items

. (14)

Table 1: Details of the database.

Hand Shape Training set Test set

0 37 12

1 94 47

2 64 27

3 84 36

4 72 34

5 193 59

6 80 46

7 20 7

8 35 23

Total 679 291

On the test set, we obtain an accuracy of 90.7%. Most of
the mistakes are due to the following.

(i) A strong overlap of the classes in the descriptor space:
some rather different images have closed description
and consequently, the Hu invariants, though efficient
on really discriminated classes of hand shapes, are not
powerful enough.

(ii) Classes 3 and4 are difficult to separate, because of the
similarity of the configurations, as well as for classes 1
and 2 and for classes 6 and 7, when the fingers are kept
grouped.

(iii) The descriptors are also not very successful for classes
3 and 7; it is due to the similarity between a mirror im-
age of configuration 3 and an image of configuration 7
when both of them are performed with the fingers too
much separated. The detection of the thumb, which is
an easier finger to detect, would help to make the dif-
ference.

(iv) The fusion of the binary SVMs is not really efficient:
to our point, 3% to 5% of the mistakes are due to the
one-versus-one procedure. The final result is mistaken
whereas the separated SVMs give consistent results.

In this experiment, both learning and test are made on
a single corpus user. We nonetheless consider some small
experiments to have an idea of the manner in which these
results can be generalized to multiple coders: within our
database, few acquisitions are made with another glove which
is not as adapted as the main one (see Section 5.1). Con-
sequently, the shape of the hand looks rather different. We
used the learning made on the main glove in the database to
classify the other few images with the “bad” glove. Conse-
quently, we submit unknown glove shapes to the classifica-
tion algorithm. We also capture few hand shape performed
by non-cued-speech coder (consequently the configurations
are performed out of coding context) in order to have a hint
on the variability of the hands. The same classification pro-
cess is applied with the same previous learning. It appears
that the accuracy drops only from 1 to 3 points, depending
on the corpora.
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5.6. Camera calibration and computation cost

In terms of computation, we are now restricted to Mat-
Lab/C/C++ code (with no micro-processor optimizations)
and Intel Pentium workstations running under Microsoft
Windows, so the real time is not reachable yet. However, a
processing rate of 5 image/s (image size: 480 x 360 pixels) is
promising for future real time implementation on dedicated
hardware. From our test, a real-time version of the algorithm
needs to cope with rates higher than 40 image/sec: an acqui-
sition frame rate of 50 image/s is really sufficient for no PT
being lost by the subsampling, even in case of a fast coder.
On the contrary, a frame rate of 25 and 30 image/s is not
enough, some PTs are missing. Finally, the focus of the cam-
era is a real issue, as it is required to have the face and the
hand in a single picture, while having a high enough resolu-
tion to segment the lip (for the lip-reading task carried out
by another team, as we do not expect to use several cameras
in THIMP). So far, only the professional camera of the main
corpus of data fulfils these requirements.

5.7. Sentence recognition

All the elements of our architecture have been described so
far, and the whole system has to be evaluated. As our purpose
is to decode sentence as a whole, let us select for each sentence
from the corpus a lattice of potential phonemes, and define
the overall accuracy OvAcc as

OvAcc = 100·
Number Of Sentences completly included

in the proposed lattice of phonemes

Number Of Sentences
.

(15)

This definition of the overall accuracy is very restrictive as
a single omission of a gesture in a sentence is sufficient to
consider the whole sentence as false. Of course, a rate on the
number of correctly recognized gestures would lead to higher
recognition rates. But as our final purpose is natural coding
recognition (that is sentence decoding), we consider that it is
better to evaluate the whole process with respect to this goal,
even if the global resulting accuracy score is not as high.

In practice, the selection of PTs is very efficient, as our
experiments showed it. But

(i) few mistakes remain;
(ii) for the PTs which have been correctly detected, there

are several images that potentially correspond, and the
early reduction does not always select the same one as
the expert who defined the ground truth. Hence, we
find that the set of PTs automatically and correctly de-
tected via the early reduction has a bigger variance that
the ground truth set.

Consequently, the accuracy of configuration recognition is
slightly lower when considered in the whole process rather
than isolated. Secondly, the same problem occurs in bigger
proportion for the location recognition, for the simple rea-
son that the PTs have not been designed to detect PTs for the
location as precisely as to detect the PTs for the configura-
tion. Finally, the synchronization problems between the two

Table 2: Summary of the results.

Algorithm Qualitative evaluation Accuracy rate

Segmentation Good results within the 99.4%
acquisition conditions specified

Pointing area The chin pointing area is less —
robust than the others. Definition
is improved by Kalman filtering

Pointing finger The hand must remain in the 99.7%
acquisition plan

PT selection — 96%

Configuration — 90.7%

classification

Camera Professional camera with —

calibration frame rate > 40 image/s is required

Sentence There are synchronization < 50%

recognition problems which are not dealt yet

components (hand configuration and location) of the hand
gesture (raised by [3]) are not yet addressed in the process we
presented.

For these three reasons, the overall accuracy OvAcc on
the lattice of phonemes is far lower than acceptable rates.
Hence, we have evaluated it only on 20 sentences randomly
chosen among the part of the corpus which has not been used
to extract the training set for the configuration classification.
From our test, 40% ≤ OvAcc ≤ 50%, depending on the eval-
uations. This does not question our methodology and algo-
rithms (specially the early reduction), as, taken individually,
they all provide good or very good results (these results are
summarized in Table 2) .

Moreover, despite giving still insufficient results on global
sentence recognition, our method has a very powerful ad-
vantage: its use is not conditioned to any subset of language.
Hence, the results which are announced are likely to be eas-
ily generalized to more complex sentences or even to natu-
ral dialogue. Classically, the systems described in the litera-
ture (see Section 1) propose accurate results on very restric-
tive cases for which any extension is bounded to reduce the
performance. Hence, our method is really new and its per-
formances need to be estimated with respect to this general-
ization capability.

Nonetheless, the results only points out the lack of global
fusion or integration process. For the moment, such a pro-
cess gathers all our efforts and is the main aspect of our fu-
ture work. From our prime analysis, this integration module
is likely to be far less complicated than expected thanks to the
early reduction. Finally, for a perfect sentence-by-sentence in-
terpretation such an integration module might not be suffi-
cient and a language model might be necessary. These aspects
will be the topic of our future works, but also that of the other
teams of THIMP.

6. CONCLUSION

In this paper, we proposed a first complete automatic cued
speech gesture recognition method. From an image-by-
image processing point of view, the algorithms involved are
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rather classical (segmentation and classification steps), but
from a video processing point of view, we provided an origi-
nal method called the early reduction. From our experiments,
all the proposed algorithms give satisfactory or very satisfac-
tory results, at a gesture level. On the contrary, their inte-
gration into a global system leads to results at the level of
complete sentence interpretation, which are not yet as satis-
factory. This is due to the lack of a last module the purpose of
which is to fuse the information from the various classifiers
and the Early Reduction. Consequently, our future works will
be focused on such a module.
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