Strategy | Methods | Criteria |
---|---|---|
Prune in one step | L1 [33] | Weights: \( S_{j}=\sum \left | w_{k} \right | \) |
Redundant channels [67] | Weights: \(SIM_{C}(\mathbf {W}_{i},\mathbf {W}_{j}) = \frac {\mathbf {W}_{i}\boldsymbol {\cdot } \mathbf {W}_{j}}{\left \| \mathbf {W}_{i} \left \| \boldsymbol {\cdot } \right \| \mathbf {W}_{j} \right \|}\) | |
Entropy [34] | Feature maps: \(E_{j} = -\sum _{a=1}^{m}\left (p_{a}log(p_{a})\right)\) | |
Prune iteratively | Taylor [32] | Feature maps: \(\left | \Delta C(\mathbf {H}_{i,j}) \right | = \left | \frac {\delta C}{\delta \mathbf {H}_{i,j}} \mathbf {H}_{i,j}\right |\) |
FPGM [68] | Weights: \(\phantom {\dot {i}\!}\mathbf {W}_{i,j^{\ast }} \in {argmin}_{j^{\ast } \in R^{n_{{in}} \times k * \times k}} \sum _{j^{\prime } \in [1, n_{{out}}]} ||x - \mathbf {W}_{i,j^{\prime }}||_{2}\) | |
Prune iteratively with regularization | Play and Prune [69] | Weights: \(S{_{j}}=\sum \left | w_{k} \right |\) |
Auto-Balance [70] | Weights: \(S{_{j}}=\sum \left | w_{k} \right |\) | |
Prune iteratively, min reconstruction error | ThiNet | Feature maps: \(\mathbf {H}_{i+1,j} = \sum _{j=1}^{C} \sum _{k=1}^{K} \sum _{k=1}^{K} \mathbf {W}_{i,j,k,k}*\mathbf {H}_{i,j}\) |
Channel pruning [35] | Feature maps: \({\underset {\beta,\mathbf {W}}{\arg \min } \tfrac {1}{2N}\left \| \mathbf {H}_{i+1,j} - \sum _{j=1}^{n} \beta _{i,j} \mathbf {H}_{i,j} \mathbf {W}_{i,j} \right \|_{F}^{2}+ \lambda \left \| \beta \right \|_{1} }\) | |
Prune progressively | PSFP [36] | Weights: \(S{_{j}}=\sum \left | w_{k} \right |_{2}\) |