Auto correlation
|
\(\widetilde {\phi ^{R}}=\sum _{k}\sum _{l}(k\times l)P(k,l)\)
|
Contrast
|
\(\widetilde {\phi ^{C}}=\sum _{k=1}^{\phi ^{\Gamma }}\sum _{l=1}^{\phi ^{\Gamma }}|k-l|^{2}P(k,l) \)
|
Correlation 1
|
\(\widetilde {\phi ^{R_{1}}}=\sum _{k=0}^{\phi ^{\Gamma }-1}\sum _{l=0}^{\phi ^{\Gamma }-1}(k\times l)P(k,l)-\phi ^{\mu _{x}}\phi ^{\mu _{y}} \)
|
Correlation 2
|
\(\widetilde {\phi ^{R_{2}}}=\frac {\sum _{k=0}^{\phi ^{\Gamma }-1}\sum _{l=0}^{\phi ^{\Gamma }-1}(k-\phi ^{\mu _{k}})(l-\phi ^{\mu _{l}})P(k,l)}{\sigma }\)
|
Cluster prominence
|
\(\widetilde {\phi ^{\mathbb {P}}}=\sum _{k=0}^{\phi ^{\Gamma }-1}\sum _{l=0}^{\phi ^{\Gamma }-1}\{k+l-\phi ^{\mu _{x}}-\phi ^{\mu _{y}}\}^{4}P(k,l)\)
|
Cluster shade
|
\(\widetilde {\phi ^{S}}=\sum _{k=0}^{\phi ^{\Gamma }-1}\sum _{l=0}^{\phi ^{\Gamma }-1}\{k+l-\phi ^{\mu _{x}}\phi ^{\mu _{y}}\}^{3}P(k,l)\)
|
Dissimilarity
|
\(\widetilde {\phi ^{D}}=\sum _{k}\sum _{l}P(k,l)|k-l|\)
|
Energy
|
\(\widetilde {\phi ^{\mathbb {E}}}=\sum _{k}\sum _{l} P(k,l)^{2}\)
|
Entropy
|
\(\widetilde {\phi ^{H}}=\sum _{k}\sum _{l} P(k,l)logP(k,l)\)
|
Homogeneity 1
|
\(\widetilde {\phi ^{\alpha _{1}}}=\frac {\sum _{k}^{\phi ^{\Gamma }-1}\sum _{l}^{\phi ^{\Gamma }-1}P(k,l)}{1+|k-l|}\)
|
Homogeneity 2
|
\(\widetilde {\phi ^{\alpha _{2}}}=\frac {\sum _{k}^{\phi ^{\Gamma }-1}\sum _{l}^{\phi ^{\Gamma }-1}P(k,l)}{1+(k-l)^{2}}\)
|
Maximum probability
|
\(\widetilde {\phi ^{P}}=max_{k,l}\ P(k,l)\)
|
Sum of squares (variance)
|
\(\widetilde {\phi ^{\sum {\hat \sigma ^{2}}}}=\sum _{k=0}^{\phi ^{\Gamma }-1}\sum _{l=0}^{\phi ^{\Gamma }-1} (k-\phi ^{\mu })^{2} P(k,l)\)
|
Sum average
|
\(\widetilde {\phi ^{\sum \mathbb {A}}}=\sum _{k=2}^{2\phi ^{\Gamma }-2}k P_{x+y}(k)\)
|
Sum entropy
|
\( \widetilde {\phi ^{\sum {H}}}=-\sum _{k=2}^{2\phi ^{\Gamma }-2}P_{x+y}(k)log(P_{k+l}(k))\)
|
Sum variance
|
\(\widetilde {\phi ^{\sum \sigma ^{2}}}= \sum _{k=2}^{2\phi ^{\Gamma }-2}(k-\widetilde {\phi ^{H}})P_{x+y}(k) \)
|
Difference variance
|
\(\widetilde {\phi ^{\bar {\sigma ^{2}}}}=\sigma ^{2}(P_{x-y})\)
|
Difference entropy
|
\(\widetilde {\phi ^{\breve {H}}} = -\sum _{k=0}^{\phi ^{\Gamma }-1}P_{k-l}(k)log\{P_{k-l}(k)\}\)
|
Information measure of correlation 1
|
\(\widetilde {\phi ^{MR_{1}}}=\frac {\widetilde {\phi ^{H}}-H_{xy1}}{max(H_{x},H_{y})} \)
|
Information measure of correlation 2
|
\(\widetilde {\phi ^{MR_{2}}}=\sqrt {(1-exp\left [-2.0\left (H_{xy2}-\widetilde {\phi ^{H}}\right)\right ]}\)
|
Inverse difference normalized
|
\(\widetilde {\phi ^{D^{-1}}}=\sum _{k} \sum _{l}\frac {P(k,l)}{1+\frac {|k-l|}{\phi ^{\Gamma }}}\)
|
Inverse difference moment normalized
|
\(\widetilde {\phi ^{DM^{-1}}}=\sum _{k} \sum _{l}\frac {P(k,l)}{1+\frac {(k-l)^{2}}{\phi ^{\Gamma }}}\)
|