Skip to main content

Table 11 The pseudocode of the embedding process of one PU partition modes group from 16 ×16-sized CUs

From: Steganography algorithm based on modified EMD-coded PU partition modes for HEVC videos

Input: a group containing two PU partition modes, denoted by p = (p1, p2), a basis vector b = (b1, b2), and a secret digit s in a (22 + 3 − 1)-ary notational system
Output: the modified group of p, denoted by p
1. F = pb = p1 × b1 + p2 × b2
2. if s ≥ F
3. d = s-F
4. else if s < F
5. d = 22 + 3 − 1 − |s − F|
6. end if
7. ptemp = (p1 + d1, p2 + d2)
8. if (any element of ptemplarger than 7 or smaller than 0)
9. for i=0:1:7
10. for j = 0:1:7
11. record all the \( {\mathbf{p}}_l=\left({p}_{l_1},{p}_{l_2}\right)=\left(i,j\right) \)that makes i × b1 + j × b2 =  = s, and store them in one set
12. \( \mathbf{P}=\left\{{\mathbf{p}}_l=\left({p}_{l_1},{p}_{l_2}\right),l\in \Big\{1,2,\cdots, k\Big\}\right\} \)
13. end for
14. end for
15. for l=1:1:k
16. calculate the Manhattan Distance md of each element in P from p, i.e. \( \left|{\mathbf{p}}_l-\mathbf{p}\right|=\left|{p}_{l_1}\hbox{-} {p}_1\right|+\left|{p}_{l_2}\hbox{-} {p}_2\right| \)
17. end for
18. \( {\mathbf{p}}^{\prime }=\underset{{\mathbf{p}}_l}{\arg \min}\left(\left|{p}_{l_1}-{p}_1\right|+\left|{p}_{l_2}-{p}_2\right|\right) \)
19. else if
20. p = ptemp
21. end if