Encoder
|
Decoder
|
Discriminator (Xu’Net)
|
---|
Input:6×256×256
|
Input:3×256×256
|
Input:3×256×256
|
Conv(6, 64, 7)
| | |
Conv(64,128,3)
| | |
Conv(128,256,3)
| | |
Res_block1(256,256,3)
|
Conv(3, 64,3)
|
kv_filter(3,1,5)
|
Res_block2(256,256,3)
|
Conv(64, 128,3)
|
Conv(1, 8, 5)
|
Res_block3(256,256,3)
|
Conv(128,256,3)
|
Conv(8, 16, 5)
|
Res_block4(256,256,3)
|
Conv(256,128,3)
|
Conv(16, 32, 3)
|
Res_block5(256,256,3)
|
Conv(128, 64, 3)
|
Conv(32, 64,3)
|
Res_block6(256,256,3)
|
Conv(64, 3,3)
|
Conv(64,128,3)
|
Res_block7(256,256,3)
|
Sigmoid(3, 3)
|
Sigmoid(128,1)
|
Res_block8(256,256,3)
| | |
Res_block9(256,256,3)
| | |
DeConv(256,128, 3)
| | |
DeConv(128, 64, 3)
| | |
Conv(64, 3, 7)
| | |
Tanh(3,3)
| | |
Output:3×256×256
|
Output:3×256×256
|
Output:1
|
- Each resnet block includes two 3×3 convolutional layers with batch normalization operation and ReLU activation function, which outputs the result of adding the input feature map and the feature map after two convolutional layers