Skip to main content

Table 1 Forward/backward difference with periodic boundary condition in convolution/matrix form and their Fourier transform

From: Directional global three-part image decomposition

 

Forward difference

Backward difference

Convolution

\(\partial ^{+}_{x} f[\!{\mathbf {k}}] = f[\!k_{1}, k_{2}+1] - f \left [k_{1}, k_{2}\right ]\)

\(\partial ^{-}_{x} f[\!{\mathbf {k}}] = f[\!k_{1}, k_{2}] - f [\!k_{1}, k_{2}-1]\)

form

\(\partial ^{+}_{y} f[\!{\mathbf {k}}] = f[\!k_{1}+1, k_{2}] - f [\!k_{1}, k_{2}]\)

\(\partial ^{-}_{y} f[\!{\mathbf {k}}] = f[\!k_{1}, k_{2}] - f [\!k_{1}-1, k_{2}]\)

Matrix

\(\left [ \partial ^{+}_{x} f[\!{\mathbf {k}}] \right ]_{{\mathbf {k}} \in \Omega } = {\mathbf {f}} \, {\mathbf {D}_{\mathbf {n}}^{\text {T}}}\)

\(\left [ \partial ^{-}_{x} f[\!{\mathbf {k}}] \right ]_{{\mathbf {k}} \in \Omega } = - {\mathbf {f}} \, {\mathbf {D}_{\mathbf {n}}}\)

form

\(\left [ \partial ^{+}_{y} f[\!{\mathbf {k}}] \right ]_{{\mathbf {k}} \in \Omega } = {\mathbf {D}_{\mathbf {m}}} {\mathbf {f}}\)

\(\left [ \partial ^{-}_{y} f[\!{\mathbf {k}}] \right ]_{{\mathbf {k}} \in \Omega } = - {\mathbf {D}_{\mathbf {m}}^{\text {T}}} {\mathbf {f}}\)

Fourier

\(\left (e^{j \omega _{2}} - 1 \right) F \left (e^{j {\boldsymbol {\omega }}} \right)\)

\(- \left (e^{-j\omega _{2}} - 1 \right) F \left (e^{j {\boldsymbol {\omega }}} \right)\)

transform

\(\left (e^{j\omega _{1}} - 1 \right) F \left (e^{j {\boldsymbol {\omega }}} \right)\)

\(- \left (e^{-j \omega _{1}} - 1 \right) F \left (e^{j {\boldsymbol {\omega }}} \right)\)

  1. \({\mathbf {D}_{\mathbf {n}}^{\text {T}}}\) and \({\mathbf {D}_{\mathbf {m}}^{\text {T}}}\) are the transposed matrices of D n and D m , respectively