Skip to main content

Table 7 Simulation data for the test image #3 and 13, noise model ( 1), all considered metrics

From: On required accuracy of mixed noise parameter estimation for image enhancement via denoising

δ k , δ ν PSNR PSNR-HVS-M MSSIM
MO MM MS MCW MO MM MS MCW MO MM MS MCW
Image 03
 Case k = 0.2; σ si 2 = 50
  0.05 36.58 36.57 0.013 0.046 37.40 37.40 0.006 0.017 0.9841 0.9841 0.0001 0.0002
  0.10 36.55 0.045 0.160 37.38 0.030 0.103 0.9840 0.0002 0.0007
  0.15 36.52 0.103 0.364 37.37 0.059 0.207 0.9839 0.0005 0.0016
  0.20 36.49 0.158 0.557 37.34 0.091 0.328 0.9838 0.0007 0.0025
  0.25 36.41 0.244 0.900 37.29 0.142 0.534 0.9834 0.0011 0.0041
 Case k = 1.0; σ si 2 = 30
  0.05 34.53 34.52 0.020 0.065 34.67 34.67 0.004 0.018 0.9756 0.9764 0.0002 0.0005
  0.10 34.51 0.051 0.173 34.66 0.026 0.095 0.9764 0.0004 0.0012
  0.15 34.44 0.132 0.480 34.63 0.071 0.260 0.9760 0.0009 0.0031
  0.20 34.37 0.336 1.162 34.58 0.189 0.662 0.9756 0.0023 0.0077
  0.25 34.35 0.347 1.218 34.56 0.198 0.710 0.9755 0.0023 0.0079
Image 13
 Case k = 0.2; σ si 2 = 50
  0.05 31.00 31.00 0.034 0.102 35.42 35.42 0.046 0.138 0.9828 0.9828 0.0003 0.0008
  0.10 30.98 0.066 0.215 35.40 0.087 0.277 0.9827 0.0005 0.0016
  0.15 30.96 0.100 0.343 35.37 0.126 0.426 0.9825 0.0008 0.0025
  0.20 30.97 0.151 0.479 35.40 0.194 0.598 0.9827 0.0012 0.0036
  0.25 30.93 0.164 0.555 35.36 0.217 0.709 0.9825 0.0013 0.0043
 Case k = 1.0; σ si 2 = 30
  0.05 28.64 28.64 0.041 0.127 32.01 32.01 0.054 0.164 0.9713 0.9713 0.0005 0.0017
  0.10 28.64 0.080 0.246 32.01 0.101 0.308 0.9712 0.0010 0.0031
  0.15 28.61 0.109 0.356 31.98 0.137 0.443 0.9710 0.0014 0.0045
  0.20 28.62 0.143 0.450 32.00 0.185 0.563 0.9713 0.0019 0.0059
  0.25 28.55 0.241 0.810 31.93 0.299 0.975 0.9706 0.0031 0.0098