Skip to main content

Advertisement

Unsupervised Modeling of Objects and Their Hierarchical Contextual Interactions

Article metrics

Abstract

A successful representation of objects in literature is as a collection of patches, or parts, with a certain appearance and position. The relative locations of the different parts of an object are constrained by the geometry of the object. Going beyond a single object, consider a collection of images of a particular scene category containing multiple (recurring) objects. The parts belonging to different objects are not constrained by such a geometry. However, the objects themselves, arguably due to their semantic relationships, demonstrate a pattern in their relative locations. Hence, analyzing the interactions among the parts across the collection of images can allow for extraction of the foreground objects, and analyzing the interactions among these objects can allow for a semantically meaningful grouping of these objects, which characterizes the entire scene. These groupings are typically hierarchical. We introduce hierarchical semantics of objects (hSO) that captures this hierarchical grouping. We propose an approach for the unsupervised learning of the hSO from a collection of images of a particular scene. We also demonstrate the use of the hSO in providing context for enhanced object localization in the presence of significant occlusions, and show its superior performance over a fully connected graphical model for the same task.

Publisher note

To access the full article, please see PDF.

Author information

Correspondence to Devi Parikh.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Parikh, D., Chen, T. Unsupervised Modeling of Objects and Their Hierarchical Contextual Interactions. J Image Video Proc 2009, 184618 (2009) doi:10.1155/2009/184618

Download citation

Keywords

  • Pattern Recognition
  • Computer Vision
  • Graphical Model
  • Superior Performance
  • Single Object