Skip to main content

Advertisement

Feature Classification for Robust Shape-Based Collaborative Tracking and Model Updating

Article metrics

  • 905 Accesses

  • 2 Citations

Abstract

A new collaborative tracking approach is introduced which takes advantage of classified features. The core of this tracker is a single tracker that is able to detect occlusions and classify features contributing in localizing the object. Features are classified in four classes: good, suspicious, malicious, and neutral. Good features are estimated to be parts of the object with a high degree of confidence. Suspicious ones have a lower, yet significantly high, degree of confidence to be a part of the object. Malicious features are estimated to be generated by clutter, while neutral features are characterized with not a sufficient level of uncertainty to be assigned to the tracked object. When there is no occlusion, the single tracker acts alone, and the feature classification module helps it to overcome distracters such as still objects or little clutter in the scene. When more than one desired moving objects bounding boxes are close enough, the collaborative tracker is activated and it exploits the advantages of the classified features to localize each object precisely as well as updating the objects shape models more precisely by assigning again the classified features to the objects. The experimental results show successful tracking compared with the collaborative tracker that does not use the classified features. Moreover, more precise updated object shape models will be shown.

Publisher note

To access the full article, please see PDF.

Author information

Correspondence to M. Asadi.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Asadi, M., Monti, F. & Regazzoni, C.S. Feature Classification for Robust Shape-Based Collaborative Tracking and Model Updating. J Image Video Proc 2008, 274349 (2008) doi:10.1155/2008/274349

Download citation

Keywords

  • Image Processing
  • Pattern Recognition
  • Computer Vision
  • Good Feature
  • Classified Feature