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Abstract

This paper presents a low-light image restoration method based on the variational Retinex model using the bright
channel prior (BCP) and total-variation minimization. The proposed method first estimates the bright channel to
control the amount of brightness enhancement. Next, the variational Retinex-based energy function is iteratively
minimized to estimate the improved illumination and reflectance using the BCP. Contrast of the estimated
illumination is enhanced using the gamma correction and histogram equalization to reduce a color distortion and
noise amplification. Experimental results show that the proposed method can provide the better restored result than
the existing methods without unnatural artifacts such as noise amplification and halo effects near edges.
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1 Introduction

Various imaging systems that consist of an optical sys-
tem and imaging sensor have been widely used in var-
ious industrial and consumer application fields such as
advanced driver assistance systems (ADAS), surveillance
systems, robot vision, and medical imaging [1]. To acquire
the high-quality images, sophisticated but compact imag-
ing systems are particularly useful by reducing the size
of a sensor and increasing the pixel density. However, in
low-light condition, it is hard to obtain the high-quality
input image since the sensor cannot sufficiently react to
the very small amount of incoming light. In addition, the
interference of the light between the reduced pixels leads
to the chromatic noise. As a result, the low-light arti-
facts make the post-processing step difficult such as object
recognition, detection, and tracking. To solve this prob-
lem, various image brightness enhancement methods have
been proposed in the literature.

Histogram-based methods enhance the contrast of an
input image by redistributing the intensity bins or mod-
ifying the cumulative distribution function (CDF) at the
low-computational cost [2-7]. However, since the low-
light image provides the narrow histogram distribution,
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the CDF has many abrupt increases, which results in the
brightness saturation and color distortion.

Recently, the haze removal method is adapted to the
low-light image enhancement because the inversion of the
low-light input image shows the visually similar property
to the hazy image [8]. This method is based on the statis-
tical prior knowledge of the haze-free natural image called
dark channel prior (DCP) [9]. The DCP is estimated by
finding the minimum value among the R, G, and B pixels,
and it is used to estimate the transmission map of the non-
haze region. Although the haze removal-based method
can better preserve the bright region than the histogram-
based methods without brightness saturation, it cannot
avoid the noise amplification and color distortion in the
resulting image.

On the other hand, Retinex-based methods are based
on the human color perception system [10, 11]. Provenzi
et al. mathematically analyzed the Retinex algorithm
and demonstrated the performance according to various
parameters such as threshold and the number of path of
light paths to a pixel [11]. The Retinex methods enhance
the input image by eliminating the illumination compo-
nent using the low-pass filtering and logarithmic transfor-
mation [12-14]. However, the resulting image shows the
halo effect near the edges.

To solve this problem, the state-of-the-art Retinex
methods incorporate with the variational optimization
method using /;- and /3-norm minimization [15, 16].
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Li et al proposed a variational Retinex method using the
constraint term that minimizes the combined reflectance
component and the image gradient to reduce the halo
effect [17]. Ma et al. performed the variational optimiza-
tion by minimizing the constraint term on the reflectance
component using /;-norm [18]. Fu et al. proposed the
bright channel prior (BCP) to reduce the halo effect
and color distortion using />-norm minimization on the
illumination and reflectance components [19]. However,
since the BCP is estimated in the image patch, it results in
the blocking and halo artifacts in the resulting image.

In this paper, we present the low-light image restoration
method using the variational optimization-based Retinex
model and BCP. In order to reduce the blocking and halo
artifacts, the proposed method estimates the pixel-wise
bright channel. In addition, the /;-norm minimization of
the reflectance component provides the edge-preserving
noise reduction without the halo effect near the edges.
In order to reduce color distortion and brightness over-
enhancement, the proposed method performs the local
histogram equalization on the illumination component.
Finally, the restored result is generated by combining the
optimized reflectance and enhanced illumination com-
ponents. Experimental results show that the proposed
method can provide significantly enhanced result without
the halo effect, noise amplification, and color distortion.

This paper is organized as follows. Section 2 briefly
describes variational Retinex model and total variation as
theoretical background. Section 3 presents the proposed
variational Retinex model. Experimental results are shown
in Section 4, and Section 5 concludes the paper.

2 Theoretical background

2.1 Variational Retinex model using bright channel prior
Retinex-based image enhancement methods assume that
an image can be formulated as a multiplication of the
illumination and reflectance components as

g =fifw (1)

where g represents the observed image, f; is the illumi-
nation component, which can be regarded as the light
directly entered into an imaging sensor, and fz is the ratio
of the reflected light by the object.

The conventional Retinex-based enhancement method
is defined as

log fr = logg — log[g * G], (2)

where * represents the convolution operator, G is the
Gaussian low-pass filter, and logfz is the reflectance image
[12]. This method assumes that the slowly changing illu-
mination component can be estimated by the Gaussian
low-pass filtered version of the input image. Next, the
reflectance component is computed by subtracting the
estimated illumination component from the input image.
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However, the halo effect around the edges is generated
according to the size of the Gaussian low-pass filter.

To solve this problem, the multi-scale Retinex (MSR)
algorithm estimates several illumination components
using multiple, different Gaussian low-pass filters [13].
The resulting enhanced image is reconstructed using the
weighted sum of multiple reflectance components. How-
ever, the MSR method cannot completely remove the halo
effect near the edges.

To solve the halo effect problem, a variational Retinex
model using the /;- and /;-norm minimization on the
illumination and reflectance components was recently
proposed [15]. Specifically, Fu et al. restored the low-light
image using the bright channel prior on the reflectance
component in the variational Retinex method without log-
arithmic transform and Gaussian low-pass filtering [19].
The energy function is defined as

arg min HfRfL _3”3 o ||VfL||§
St

+B[9elly + v I - a3
where g and g;, represent the input low-light image and
its bright channel, respectively. HfRfL - gHZ represents the

data fidelity term, and || VL ||§ and || Vfr H; are the smooth-
ness constraint term on the illumination and reflectance
components. ‘VL -9 ||§ penalizes the brightness of illu-
mination component. «, 8, and y represent positive regu-
larization parameters.

The bright channel g, is defined as

gx) = max ( max gc(y)> , (4)

yew(x)

where w(x) represents the image patch whose center is
located at x and ¢ € {R, G, B} [19].

In the Retinex theory, since the illumination compo-
nent is regarded as the low-frequency component, it can
be replaced by a locally constant value in the specified
region [19]. In addition, the reflectance component rep-
resents the ratio of the reflected light from an object in
the range of 0 < fz < 1. Therefore, the constraint term
”fL - g ”; in (3) can be derived by taking the maximum
operation on both sides of (1) as

max ( max gc(y)) = max ( ma(x)flg(y))fz. (5)
c YEW(x

¢ YEW(x)

Since the maximum value of the reflectance component
is 1, it can be expressed as

@@ =fi, (6)

where fNL represents the illumination component of the
image patch. The constraint term HfL - ||§ implies that
the illumination component of an image is close to the
bright channel to prevent the over-enhanced result.
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2.2 Edge-preserving noise reduction using total variation
The degradation model of noisy image is generally
defined as

g=f+n (7)

where g and f respectively represent the noisy and noise-
free images and 7 is the additive white Gaussian noise.

In order to perform edge-preserving denoising, Rudin et
al. minimized the magnitude of the gradient of an image
using /;-norm minimization [20]. The total variation-
based noise reduction is defined as

Ef) = |f — gl + 2]/, (®)

where ‘Lf — gHi represents the data-fidelity term, |Vf ”1
the total variation constraint term on the smoothness of
the resulting image, and A represents the regularization
parameter. The energy function in (8) can be solved using
the Euler-Lagrange equation as

AE o _aiv [ )
?—A(f 2 dlv(‘vf‘)—O. 9)

The edges are preserved according to the magnitude
of gradient of f. In the edge region, since the magnitude
becomes lager than the flat region, the strong edges in the
input noisy image are preserved in the resulting image.

3 Low-lightimage restoration method using the
bright channel prior

In this paper, we present a variational retinex model
using /;- and /p-norm minimization to enhance a low-
light image. The reflectance component consists of rapidly
changing high-frequency components such as edge and
noise. For this reason, the proposed method estimates
the illumination and reflectance components using -
and /; -norm minimization, respectively, to suppress noise
amplification while preserving the edge. Next, in order
to prevent over-enhancement of the reflectance compo-
nent, brightness of the estimated illumination component
is corrected using histogram equalization and the sigmoid
function.

The proposed image enhancement method estimates
the contrast enhanced image by minimizing the regular-
ized retinex model as

argmin [fefs — g, + 2 | V|5
Jrft )
+a2 |Vl + 23 | = &l
where 11, A2, and A3 represent the regularization param-

eters, |[fRfL—g||§ the data-fidelity term, ||VfL ||§ and
H Vfr| > respectively, the smoothness constraints on the
illumination and reflectance, and HfL - ||§ the data

fidelity term between the illumination component and the
bright channel.

(10)

Page 3 of 11

3.1 Pixel-wise bright channel estimation

Existing Retinex-based methods estimate the illumination
component using a Gaussian low-pass filter to extract
the spatially smoothness component [15]. However, the
estimated illumination component does not match the
human visual system (HVS) near an edge since the esti-
mated illumination component is continuous near the
edge. The incorrectly estimated illumination component
results in the halo effect.

In order to apply the discontinuity to the illumina-
tion component, Fu et al. proposed the bright channel
which can suppress the halo effect [19]. However, this
method cannot generate the optimal illumination com-
ponent because of the blocking artifact caused by the
patch-wise bright channel.

To solve this problem, the proposed enhancement algo-
rithm estimates the bright channel at each pixel as

g(x) = maxg“(x). (1

The proposed method suppresses noise by estimating

the optimal bright channel using the bilateral filter [21] as

R 1
B® =7 > &) T (), (12)
X €Q
where
W= T(x,x), (13)
X, €Q
T (xix) = Gy (||gp(xi) — @@ |) Gs (lxi —xl),  (14)

Q represents the image patch whose center is located at
%, x; is the ith pixel in the patch, G, and G; respectively
are the range and spatial filters, and g is the bright chan-
nel. The bilateral filtering process can effectively reduce
the noise while preserving the edge. The enhanced bright
channel enables to estimate the optimal illumination com-
ponent as a constraint of the regularized minimization
in (10).

Figure 1 shows the comparison of the bright channel
used in Fu’s method [19] and the proposed method. As
shown in Fig. 1b, the patch-wise bright channel shows the
halo artifact near the edge region whereas the proposed
method can reduce halo effect using the pixel-wise bright
channel, as shown in Fig. le.

3.2 Optimal reflectance and illumination components
estimation

To obtain the enhanced image, the proposed method first

initializes the illumination component using a Gaussian

low-pass filter. Next, the illumination and reflectance

components are separated using variational minimization
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Fig. 1 Comparative results using different bright channels: a input image, b patch-wise bright channel, ¢ proposed bright channel, d resulting
image using b and Fu’'s method [19], and e resulting image using ¢ and the proposed method

[19]. Specifically, the energy function related to fr is
defined as

2
g
PR £ HZ VAL a5

ER(fr) = arg min
Jr

Existing Retinex-based variational optimization meth-
ods using lo-norm minimization can reduce the noise with
a large regularization parameter at the cost of blurred
edge [19]. In order to perform edge-preserving denoising,
the proposed method estimates the reflectance compo-
nent, which contains high-frequency components, using

[1-norm minimization. The energy function in (15) can be
solved using Euler-Lagrange equation as

dE A \Y
—=<fR—£)——2-div Nf .
dfr fr 2 }Vf |
The solution for fr in (15) can be solved using the
gradient descent method as
(&
-t

(17)

(16)

A A
it =fi+r Ez-div ff;
o4

Fig. 2 Resulting images of each algorithm step: a input image; b estimated illumination image; ¢ adjusted illumination image of b; d bright channel
of a; e estimated reflectance image; and f resulting image using ¢, e (A; = 300, 1, = 0.1, A3 = 0.9,and w = 10)
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Fig. 3 Experimental results using various sets of regularization
parameters: a input image; b simulated low-light image; ¢ resulting
image with A1 = 300, A, = 0.1, 23 = 0.9,and @ = 10; d resulting
image set with different A1; e resulting image set with different A;
and f resulting image set with different A3
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where t represents the parameter that controls the con-
verge speed.
At each iteration, f1§ is forced to be in the range [0,1].
Given the estimated fz, the illumination component is
estimated by minimizing the energy function related to f7
defined as

2
| vALE

Er(f) = argrrflLin Hf —J‘%

+23 i = ;-

(18)

Since the energy function in (18) is quadratic and con-
vex, its optimality condition is obtained by solving linear
equation as

(1 s+ AlvTv)ﬁ =];£R + Aad. (19)

An efficient method to solve (19) is to use the fast
Fourier transform (FFT) as

| kF (h38p + g/fR)
fi=F |:F(1+A3+A1VTV) ' (20)

where F and F~! respectively represent the forward and
backward FFT operators. Since flé‘ is forced to be in the
range [0,1], ka is forced to be larger value than g at each
iteration [19].

Fig. 4 a—f A set of six test images to evaluate the enhancement performance
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}»3 =09, andw = 10)

Fig. 5 Comparative results using simulated low-light image with o = 5:a inputimage, b simulated low-light image, ¢ Chen’s method [2], d Kim's
method [3], e Jiang's method [8], f Ravi's method [23], g Jobson's method [14], h Fu’'s method [16], and i the proposed method (A, = 300, A, = 0.1,

The estimated reflectance component cannot avoid the
brightness over-enhancement. To solve this problem, the
sigmoid function and locally adaptive histogram equaliza-
tion is used to enhance the contrast of the estimated illu-
mination component [16, 22]. Finally, the resulting image
is reconstructed by multiplying the enhanced illumination
and estimated reflectance as

J = ey

where f represents the estimated reflectance component
by (15) and ff°'* the enhanced illumination component by
(21). Figure 2 shows a step-by-step result of the proposed
enhancement method.

4 Experimental results and discussion

In this section, to evaluate the performance of the pro-
posed low-light enhancement method, the resulting image
is compared with those of histogram-based [2, 3], trans-
mission map-based [8], variational optimization-based
[23], and Retinex-based methods [14, 16]. The regulariza-
tion parameters A1, Ay, and A3 are determined to have the
visually best enhancement result. The objective compari-
son of image enhancement performance is evaluated using
the peak signal-to-noise ratio (PSNR) and structural simi-
larity index measure (SSIM) [24]. The simulated low-light

image were generated by decreasing 70% of the brightness
and adding Gaussian noise of various standard deviations,
such as 0 = 5,10, 15, and 20.

4.1 Analysis on the regularization effect

In this subsection, the effect of regularization constraints
is analyzed using a simulated low-light image with o = 5.
Figure 3 shows the results of proposed method using var-
ious different regularization parameters to analyze the
effect of each regularization constraint. Figure 3a, b shows
the input and simulated low-light images, respectively.
Figure 3c shows the experimentally best enhancement
result.

Figure 3d shows a set of results with 1, = 0.1 and A3 = 0.9
and the three different values of A;, 1, 300, and 2000
from top to bottom. Since 1 is a parameter related to the
smoothness of the illumination component, the low- and
high-frequency components are not sufficiently separated
with a small A;. Therefore, both the illumination com-
ponent and the resulting image contain noise. Figure 3e
shows a set of results with A; = 300, A3 = 0.9, and three
different values of A3, 0.01, 0.1, and 0.2 from top to bot-
tom. Since Ay is a parameter related to the smoothness
of reflectance component, noise amplification cannot be
suppressed with a small A». However, when this parameter

Table 1 Objective performance evaluation using PSNR and SSIM values with o = 5

[2] [3] [8] [23] [14] [16] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Figure 4a 15.57 0.646 17.50 0.683 19.06 0.783 2135 0.933 16.86 0.710 22.58 0894 2677 0.964
Figure 4b 16.57 0.662 18.92 0.676 18.36 0.722 20.25 0.889 17.10 0.645 21.21 0819 2324 0.936
Figure 4c 16.68 0.636 21.50 0.711 18.66 0.697 20.18 0.780 18.23 0.620 2135 0774 2331 0.861
Figure 4d 16.87 0.720 18.69 0.735 19.40 0.821 20.49 0.876 16.68 0.706 2244 0.896 25.28 0.950
Figure 4e 17.40 0.645 21.40 0.721 16.98 0.701 18.40 0.718 16.40 0.550 21.27 0.769 24.02 0.902
Figure 4f 16.48 0.590 21.69 0.715 19.09 0.671 21.18 0.806 17.50 0.566 21.26 0.741 24.56 0.893

The italicized number represents the highest value among the set of test methods
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Fig. 6 Comparative results using simulated low-light image with o = 10: a input image, b simulated low-light image, € Chen’s method [2], d Kim's
method [3], e Jiang's method [8], f Ravi's method [23], g Jobson's method [14], h Fu’'s method [16], and i the proposed method (A, = 300,
)»2 = 0.15, )\.3 = O.9,and w = 10)

Fig. 7 Comparative results using simulated low-light image with o = 15: a input image, b simulated low-light image, € Chen's method [2], d Kim’s
method [3], e Jiang’s method [8], f Ravi's method [23], g Jobson's method [14], h Fu's method [16], and i the proposed method (A, = 300, A, = 0.2,
A3 =09 andw = 10)

Fig. 8 Comparative results using simulated low-light image with o = 20: a input image, b simulated low-light image, € Chen’s method [2], d Kim's
method [3], e Jiang's method [8], f Ravi's method [23], g Jobson's method [14], h Fu’'s method [16], and i the proposed method (A1 = 300, A, = 0.2,
A3 =09 and w = 10)
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Table 2 Objective performance evaluation using PSNR and SSIM values with o = 10

[2] [3] (8] [23] [14] [16] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Figure 4a 13.67 0.489 15.30 0.548 14.45 0.554 20.03 0.871 14.85 0.585 17.59 0711 21.44 0.935
Figure 4b 14.52 0.486 16.59 0.557 15.72 0.567 19.04 0.775 15.52 0.546 17.12 0.623 22.02 0.880
Figure 4c 14.50 0.448 17.47 0523 16.12 0.500 19.06 0.664 16.10 0479 17.21 0539 21.65 0.758
Figure 4d 14.83 0.596 16.17 0.629 15.76 0.650 19.12 0.818 14.83 0.599 17.72 0.733 2333 0.911
Figure 4e 1549 0.523 17.60 0.571 14.97 0.538 17.58 0.609 14.88 0456 17.26 0.585 22.38 0.829
Figure 4f 14.31 0396 1748 049 1527 0423 1973 0667 1565 0426 1726 0500 2305 0806
The italicized number represents the highest value among the set of test methods
Table 3 Objective performance evaluation using PSNR and SSIM values with o = 15

[2] [3] [8] [23] [14] (16l Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Figure 4a 12.21 0.390 13.66 0457 11.01 0314 17.94 0.766 13.50 0496 14.61 0554 2325 0912
Figure 4b 12.94 0.391 14.73 0471 13.25 0418 17.28 0.651 14.22 0468 14.52 0.484 21.23 0.849
Figure 4c 12.77 0327 14.78 0.387 12.62 0322 17.32 0.530 14.48 0372 14.46 0.389 20.73 0.694
Figure 4d 13.26 0.504 14.31 0.549 14.53 0.595 17.33 0.729 13.56 0.521 14.90 0.597 22.05 0.881
Figure 4e 13.69 0429 15.05 0463 13.31 0439 16.22 0513 13.56 0.381 14.61 0.462 2141 0.785
Figure 4f 12.62 0.284 14.78 0.360 13.94 0354 17.69 0.522 14.19 0335 1447 0.355 22.25 0.762
The italicized number represents the highest value among the set of test methods
Table 4 Objective performance evaluation using PSNR and SSIM values with o = 20

[2] 3] [8] [23] [14] (16l Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Figure 4a 11.23 0329 12.35 0385 10.36 0217 15.94 0.651 12.50 0429 1267 0441 21.75 0.880
Figure 4b 11.94 0333 13.23 0.398 10.23 0.289 15.67 0.549 13.20 0409 12.78 0.392 20.15 0.797
Figure 4c 11.59 0.254 13.03 0.300 10.15 0.257 15.61 0418 13.23 0.300 12.61 0.296 19.69 0.630
Figure 4d 12.11 0436 12.93 0481 10.93 0.361 15.67 0.637 12.62 0.464 13.09 0.500 2071 0.844
Figure 4e 12.28 0.351 13.22 0.379 11.86 0.369 14.81 0431 1243 0316 12.74 0373 20.13 0.713
Figure 4f 11.58 0.225 13.07 0.280 10.95 0.202 15.84 0410 13.10 0.276 12.65 0.269 20.98 0.692

The italicized number represents the highest value among the set of test methods
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Fig. 9 Result of the proposed and conventional methods: a input image, b Chen’s method [2], ¢ Kim’s method [3], d Jiang’s method [8], @ Ravi's
method [23], f Jobson’s method [14], g Fu’s method [16], and h the proposed method (A1 = 300, A; = 0.1, A3 = 0.9,and w = 10)

is set to too high, blurring artifacts occur. Figure 3f shows
a set of results with A; = 300, A = 0.1, and three
different values of A3, 0.05, 0.9, and 10 from top to bot-
tom. Since A3 is the parameter related to the data fidelity
term which controls the brightness of the illumination
component, noise amplification and color distortion are
unavoidable with a small A3. Based on the observation,
the optimal parameters are experimentally determined to
produce satisfactory result.

4.2 Objective performance evaluation using simulated
low-light images

As shown in Fig. 4, six test images were used to compare

the enhancement performance of the proposed method

with conventional methods.

Figure 5 shows the enhanced results of simulated low-
light images using the proposed and conventional meth-
ods. The objective comparison of image enhancement
performance is performed after modifying the average
intensity value of each resulting image to the average value
of Fig. 5a. PSNR and SSIM values are summarized in
Table 1.

Figure 5a, b shows the ideal image and simulated low-
light image with ¢ = 5, respectively. Figure 5c, d
shows the results of histogram-based methods with sat-
uration in the bright region. Figure 5e shows the result
of transmission map-based method that produces less
saturation than the histogram-based methods. However,
this method cannot avoid color distortion. Ravi et al.
proposed variational optimization-based method using

Fig. 10 Result of the proposed and conventional methods: a input image, b Chen’s method [2], € Kim's method [3], d Jiang's method [8], e Ravi's
method [23], f Jobson's method [14], g Fu's method [16], and h the proposed method (A1 = 300, 1, = 0.1, A3 = 0.9, and @ = 10)
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/1-norm minimization that can suppress noise while pre-
serving the sharp edge [23]. However, as shown in Fig. 5f,
it loses the dynamic range because of the brightness
constraint term using gamma correction. Figure 5g, h
shows the result of Retinex-based methods with unde-
sired artifacts. Although the Retinex-based variational
optimization method provides a better enhanced result, it
cannot suppress noise amplification. On the other hand,
the result of proposed method, as shown in Fig. 5i, shows
the significantly enhanced result with minimum color
distortion, saturation, and noise amplification than con-
ventional enhancement methods.

Figures 6, 7, and 8 show the enhanced results of simu-
lated low-light images with different levels of noise using
existing and the proposed methods. The PSNR and SSIM
values are summarized in Tables 2, 3, and 4. As shown
in Figs. 6, 7, and 8, the proposed method provided bet-
ter results than other existing methods in the sense of
bright enhancement without noise amplification. In addi-
tion, the proposed method provided improved objective
quality assessments at higher standard deviation.

4.3 Subjective evaluation using real low-light images
Figures 9 and 10 show the enhanced results of real
low-light images using conventional and the proposed
methods. The histogram-based method exhibits bright-
ness saturation and noise amplification in the resulting
image. The transmission map-based method produces the
enhanced result with noise amplification and color distor-
tion. Although Ravi’s method can successfully reduce the
noise, it loses the dynamic range because of the brightness
constraint term using gamma correction. Since Retinex-
based methods estimate the reflectance component using
the incorrectly estimated illumination component, they
cannot avoid both halo effect and noise amplification. On
the other hand, the proposed method can produce nat-
urally enhanced result with a sufficiently wide dynamic
range while reducing the halo effect and noise amplifi-
cation. However, since the proposed method estimated
the solution fz using the gradient descent method, the
processing time is longer than existing methods.

5 Conclusions

In this paper, a bright channel prior (BCP)-based vari-
ational Retinex model is presented to enhance the low-
light image restoration. The existing low-light image
enhancement methods cannot avoid undesired artifacts
such as noise amplification and halo effect. To solve this
problem, the proposed method simultaneously estimates
the optimal illumination and reflectance components by
minimizing the Retinex-based regularized energy func-
tional to suppress noise amplification during brightness
enhancement process. The constraint term related to
the smoothness of reflectance component suppresses the
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noise while preserving the edge using /;-norm minimiza-
tion. In addition, the data-fidelity term on the illumina-
tion component prevents the halo effect near the edge.
Experimental results show that the proposed method can
provide better enhanced result than conventional low-
light enhancement methods in the sense of both better
brightness enhancement and less undesired artifact.
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