
RESEARCH Open Access

A fast 3D scene reconstructing method
using continuous video
Bo-Yi Sung and Chang-Hong Lin*

Abstract

Accurate 3D measuring systems thrive in the past few years. Most of them are based on laser scanners because
these laser scanners are able to acquire 3D information directly and precisely in real time. However, comparing to
the conventional cameras, these kinds of equipment are usually expensive and they are not commonly available to
customers. Moreover, laser scanners interfere easily with each other sensors of the same type. On the other hand,
computer vision-based 3D measuring techniques use stereo matching to acquire the cameras’ relative position and
then estimate the 3D location of points on the image. Because this kind of systems needs additional estimation of
the 3D information, systems with real time capability often relies on heavy parallelism that prevents implementation
on mobile devices.
Inspired by the structure from motion systems, we propose a system that reconstructs sparse feature points to a 3D
point cloud using a mono video sequence so as to achieve higher computation efficiency. The system keeps tracking
all detected feature points and calculates both the amount of these feature points and their moving distances. We
only use the key frames to estimate the current position of the camera in order to reduce the computation load and
the noise interference on the system. Furthermore, for the sake of avoiding duplicate 3D points, the system
reconstructs the 2D point only when the point shifts out of the boundary of a camera. In our experiments, we show
that our system is able to be implemented on tablets and can achieve state-of-the-art accuracy with a denser point
cloud with high speed.

Keywords: 3D reconstruction, 2D to 3D, Point cloud, Mono camera, Mono vision

1 Introduction
The 3D reconstructing techniques have been widely pro-
moted in these years. These 3D techniques have many
ways of application, such as object modeling and 3D
printing, architecture, robots, augmented reality, med-
ical, archaeology, or just a 3D record as an alternative of
camera photos. There are many 3D acquiring methods,
such as ultrasound [1], synthetic aperture radar (SAR)
[2], and the most famous LIDAR system [3].
Recently, the 3D applications based on the RGB-D cam-

era (IR laser) are improved dramatically, such as methods
using Microsoft Kinect [4, 5] and ASUS Xtion [6, 7], which
are capable to construct an exceedingly precise and dense
3D point cloud in real time with a GPGPU (general-pur-
pose computing on graphics processing units) assist. How-
ever, since the RGB-D camera and laser scanners are not

commonly available products, at the cost of implementing
depth-estimating methods, both stereo cameras [8–10] and
mono cameras [11–15] are used to achieve the same func-
tionality of a RGB-D camera.
Among these mono cameras, methods [12, 13] are de-

signed for building a 3D point cloud with multiple 2D im-
ages. These methods usually took a long time to compute
the relation between input images in order to acquire a
large amount of cloud points with high accuracy. On the
other hand, the SLAM (simultaneous localization and
mapping) system [11] is designed for AR applications. Al-
though the system can acquire accurate camera position
in real time, the system only tracks very little amount of
feature points so that the system is not quite suitable for
reconstructing a 3D point cloud. Therefore, we seek a sys-
tem that is able to build a 3D point cloud within real time.
In this paper, we present a fast 3D reconstructing system

which is suitable for 3D scenery recording usage. Consid-
ering the structure from motion methods [12, 13], most of

* Correspondence: chlin@mail.ntust.edu.tw
Department of Electronic and Computer Engineering, National Taiwan University
of Science and Technology, No. 43, Sec. 4, Keelung Rd, Taipei 106, Taiwan

EURASIP Journal on Image
and Video Processing

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18
DOI 10.1186/s13640-017-0168-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-017-0168-3&domain=pdf
mailto:chlin@mail.ntust.edu.tw
http://creativecommons.org/licenses/by/4.0/

them take minutes or even hours to finish the work.
While the 3D reconstruction of a vast area is not the re-
quirement, such as building a whole city district, we con-
centrate at reconstructing a single scene at high speed.
First, in order to improve the speed of the overall process,
we apply the key frame selection technique, which can sig-
nificantly reduce the processing time of pose estimation
by removing duplicate information from neighbor frames
in a video sequence. Second, we maintain the precision of
the result while the overall computation time is reduced.
Because we only cut the neighbor frames, which carry al-
most same information with each other, the data kept by
system can be updated at the time when it is truly needed.
Third, the proposed system avoids to reconstruct the du-
plicated points. The duplicated point appears because the
instability of feature points, and this can be caused by the
blur, heavy motion, or the illuminance change of the
image. Avoiding duplicated points can reduce the time
needed for triangulation and save a lot of space for mem-
ory in comparison with the system, which do not avoid
the duplicated points.
By these improvements, the proposed system is able to

be implemented on a single CPU. The computation
speed achieves 5 to15 fps based on the size of the video
sequence and the number of feature points.

2 Related works
Providing a better experience for users has been an ac-
tive goal for multimedia research. Images can not only
aggregate into a 3D scene but also animate themselves
in order to provide more vivid and interesting visuals.
This works nowadays are widely implemented in mobile
devices, such as Apple Live Photos, Instagram Boomer-
ang, and the “Cinemagraphs” project (available: http://
cinemagraphs.com/). Most of them require capturing
more than one photograph. However, there are studies
that require only one still image to reconstruct the mo-
tion of an object in the photograph. A study [16] has
carried out to create the cloud motion, which is much
harder than animating the rigid objects. On the other
hand, in order to reconstruct a 3D scene, localizing the
object is critical even if the system uses the RGB-D cam-
era. There are studies that dedicated in researching a
more efficient way to track an object. The study [17]
compares the performance of the system that uses early
or the late fusion with SVM (support vector machine) or
other deep learning classifiers. In the case of hand ges-
ture recognizing, the research [18] uses the deep learn-
ing to enhance the system to track the moving hand
with faster speed without losing precision. While this re-
search is tracking a hand captured by a stationary cam-
era, the 3D reconstructing methods require studies that
track stationary objects captured by a moving camera,
reversely. There exists a lot of work that reconstructs

the 3D scene or tracks the camera positions. Since we
are concentrated in the method of using mono cameras,
only methods using mono visions will be briefly de-
scribed in the following paragraphs.
One of the solutions that can reconstruct a dense depth

map is segmenting a photo into superpixels [19, 20]. Based
on the local appearance of the photo with the global con-
straints, they build the most likely 3D structure for each
segment and use it to build the depth map. Even though
their systems give excellent results, their results are still
not precise enough and were restricted in a single view
that is not suitable for building a scenery around an area.
Instead of building depth map for an image, the

method that estimates the positions for a camera can
also reconstruct the 3D points from the estimated cam-
era positions. SLAM [11, 21] is the process that a system
incrementally builds a consistent map of its environment
and uses this map to compute its own location at the
same time. Their methods not only work in real time
but also maintain the position of the camera precisely.
However, in order to keep these efforts simultaneously
in real time, most of the approaches track only a few of
feature points, while we are interested in a method that
tracks the feature points as dense as possible.
Similar to the SLAM method, a method that also esti-

mates the positions of the cameras from video was dem-
onstrated by Akbarzadeh et al. [22]. The main purpose
of their method is to reconstruct the 3D urban scene
but not maintaining the camera track in the map. On
the other hand, the 3D reconstruction with multiple
photos that can reconstruct a scenery as large as the en-
tire city of Rome was originally demonstrated by N. Sna-
vely et al. [12, 13]. This kind of technique that processes
photo sequences into a 3D point cloud by studying the
coherence between photos is called structure from mo-
tion (SfM). This kind of method basically computes the
relative camera positions between all related photos.
After every relative camera position is found, the scheme
uses these matrices to reconstruct all feature points
using triangulation. Although the results of the method
proposed by N. Snavely et al. [12, 13] were very impres-
sive, their method requires a very long time to finish cal-
culating all required matrices. Hence, the other SfM
methods, which are VisualSFM [14] and OpenMVG
[15], are proposed to improve the processing speed and
the robustness of the system. VisualSFM [14] uses the
preemptive feature matching, the incremental structure
from motion and the re-triangulation techniques. The
incremental feature matching can greatly speed up the
process because this kind of matching will first sort all
feature points and match only first h feature points for
each photo. The scheme will not proceed to match
whole feature points unless the number of successful
matches among first h features is greater than a defined

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 2 of 14

http://cinemagraphs.com/
http://cinemagraphs.com/

threshold. Incremental structure from motion also saves
the processing time due to not performing the bundle
adjustment while a new camera was added. Instead, it
performs the bundle adjustment only when number of
points increase relatively by a certain ratio. The re-
triangulation technique lowers the camera drift caused
by the bad camera relative pose, which might have a low
ratio between their common points. They re-triangulate
these bad camera poses after a sufficient amount of data
obtained from new added cameras. OpenMVG [15] also
contains incremental structure from motion technique.
Besides that, they proposed a new iterative sampling
method called a contrario Random Sample Consensus
(AC-RANSAC) as a substitution to the original RAN-
SAC in order to acquire higher precision and better per-
formance. The AC-RANSAC using the “a contrario”
methodology in order to find a model that best fits the
data with a threshold T that adapts automatically to the
noise. Hence, it is able to find a model and its associated
noise without a fixed threshold.
In this paper, we are interested in reconstructing the

observed points as detailed as possible from the video
sequence while losing very less real-time performance.

3 Proposed method
The goal of our method is to build a 3D point cloud in
real time. We summarize our method in Fig. 1 as a flow-
chart. This method can be briefly divided into five pro-
cedures: feature processing loop, pose estimation, point
tracking, triangulation, and bundle adjustment. We will
describe each procedure in the following sections: 3.1 to
3.5, respectively.

3.1 Feature processing loop
In this section, the feature processing loop is described.
This procedure first does all the process for feature de-
tection and matching and iterates itself to search for the
points found in the previous frame. In order to improve
the efficiency, it also decides whether a frame is a key
frame or not. The key frame would then be used in the
motion data processing.

Among all feature detecting and describing algorithms,
we tested several popular algorithms including SIFT
[23], SURF [24], ORB [25], and the new A-KAZE [26]
method. These methods are tested with maximum 5000
points in 250 different images sized 853 × 480, and the
results are shown in Table 1. Based on the result, we
found that all these methods are not well suited with
our requirements. So we further tried the features from
accelerated segment test (FAST) [27] feature detection
method along with pyramidal L-K (Lucas-Kanade)
feature-tracking method [28]. As the result, the compu-
tation speed of this combination fulfills the requirements
and the method returns a great number of detected fea-
ture points while losing very little precision.
After the matched feature points are found from the

feature detecting and matching processes, the average
distance of each matched points is now calculated. In
order to increase the overall frame rate, the most im-
portant trick is to reduce the effort on computing an un-
necessary frame, for which the parallax (or baseline) of
previous frame and current frame is very small. This
kind of frame usually carries information that system
has already known by previous frames, so skipping this
frame will not only save time but also lose no important
information. On the other hand, based on our inquisi-
tion, we choose a frame to be a key frame if and only if
following situations are matched:

� The average feature distance in pixel must be more
than ImageWidth/3.

� Feature point matches did not drop dramatically
with respect to previous match.

The first situation makes sure that we will have big
enough baseline between the previous and current
frame. The second situation makes sure the key frame is
not an abruptly moved camera scene, which might con-
tain some motion blur and other noises. In the end, the
matched point data will be saved when the key frame
was selected. These matched data would then be used in
the motion data processing procedure. Simultaneously, a
new point is added while it is detected by FAST but not

Fig. 1 The workflow of proposed method

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 3 of 14

found in L-K tracker. As illustrated in Fig. 2, this means
that the newly found feature points from the current key
frame are joined to the point vector. And the point vec-
tor will not be modified until the next key frame is
selected.

3.2 Pose estimation
The pose estimation process estimates the camera poses
based on the matched feature points from previous proce-
dures. For pose estimation procedure, the projection
matrix (or camera matrix) P will be calculated and saved
along with the key frame. The projection matrix is used to
denote a projective mapping from the world coordinate to
a coordinate for a particular image in a pinhole camera.

q1
q2
1

2
4

3
5 ¼ P3�4

Q1

Q2
Q3

1

2
64

3
75 ð1Þ

Where Q = (Q1,Q2,Q3, 1) is a representation of a 3D
point in homogeneous coordinates and q = (q1, q2, 1) is a
representation of an image’s corresponding point. The
projection matrix P can be decomposed into an intrinsic
matrix and an extrinsic matrix.
For the intrinsic matrix K, it describes the geometric

property of a camera and projects 2D point from the
camera coordinates to image coordinates. K is composed
of focal length, principle point, and the skew parameter.

In short, to get a projection matrix, it is necessary to get
the intrinsic and extrinsic matrix in advance. Because in-
trinsic matrix K is only related to the camera setting, K
can be acquired by calibrating the camera. In this case,
the extrinsic matrix [R|t], which denotes the coordinate
transformations from 3D world coordinates to 3D cam-
era coordinates by the rotation R and translation t, is
what will be estimated in this section. The extrinsic
matrix describes a camera’s “pose” including camera’s ro-
tation, pan-and-tilt, and location c in the world coordin-
ate. On the other hand, the fundamental matrix I is the
algebraic representation of epipolar geometry. And the
epipolar geometry is the projective geometry between two
views. Therefore, every extrinsic matrix can be derived
from knowing relation between cameras while assuming
the first camera is located at the origin [R|t] = [I|0].
We adopt the 8-point algorithm [29] to estimate funda-

mental matrix. Nevertheless, the fundamental matrix that
was estimated will not be perfect not only because the 8
points chosen cannot be extremely accurate points, but
also because this fundamental matrix is estimated using
approximate solutions. Hence, given a current estimate of
F, the Sampson Distance [29] d is calculated to estimate
the reprojection error between the epipolar lines.

d ¼
X
i

qi0TFqi
� �2

Fqið Þ21 þ Fqið Þ22 þ FTq0
i

� �2
1 þ FTq0

i

� �2
2

ð2Þ

Where Fqið Þ2j means the square of jth entry of the vec-

tor Fqi. The system iterates itself with random 8
matched points to estimate the fundamental matrix F
and tries to search for F with the smallest d using Ran-
dom Sample Consensus (RANSAC) robust estimation
[30]. Since the fundamental matrix was estimated, an es-
sential matrix [29] can be estimated by Eq. (3). Regard-
ing a fundamental matrix, an essential matrix is a
specialization of the fundamental matrix to the case of a

Table 1 Results of feature processing methods

Points Ms/frame Ms/point

SIFT [23] 1112 501.49 0.45

SURF [24] 2829 453.43 0.16

ORB [25] 4748 340.68 0.07

AKAZE [26] 1319 285.98 0.22

FAST [27] and L-K [28] 4284 33.71 0.01

Fig. 2 Feature refreshing process

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 4 of 14

calibrated camera. Because it does not have projective
ambiguity which fundamental matrix contains, it is
better to get rotation and translation matrix [R|t] by
decomposing an essential matrix.

E ¼ K
0TFK ð3Þ

Once the essential matrix is determined, the camera
rotation and translation matrix [R|t] against the world
coordinate can be retrieved. Because the essential matrix
is composed of rotation and translation matrices, it can
be expressed as:

E ¼ t½ ��R ¼ SR ¼ UΣVT ð4Þ
Where UΣVT is the SVD of E and [t]× = S is the 3 × 3

skew-symmetric matrix for the corresponding 3-vector t.
The Hartley & Zisserman essential matrix decomposing
method [29] is utilized to acquire [R|t]. It first defines an
orthogonal matrix W and a skew-symmetric matrix Z:

W ¼
0 −1 0
1 0 0
0 0 1

2
4

3
5; Z ¼

0 −1 0
1 0 0
0 0 0

2
4

3
5 ð5Þ

Then, S and R can be directly computed by these pos-
sible factorizations:

S ¼ UZUT; R ¼ UWTVT or UWVT ð6Þ
Base on the essential matrix constraint [29], a 3 × 3

matrix is an essential matrix if and only if two of its sin-
gular values are equal and the third is zero. And in Eq.
(4) SR = (UZUT)(UWVT) =U(ZW)VT, the singular values
Σ = diag(1, 1, 0) and Σ = ZW are true as required.
Corresponding to an essential matrix, there are four

possible solutions for the extrinsic matrix because of
two possible choices of R and the unknown sign of t. It
means that the translation vector from the first to the
second camera can be reversed and camera can have a
rotation 180° about the baseline. In order to decide be-
tween all four solutions, it is sufficient to test with input
points from previous procedure and see which solution
reconstructed most points located in front of both cam-
eras. Reconstruction is done by a simple triangulation,
assuming the first camera locating at the origin [I|0] and
the second located at [R|t]. Triangulation will be de-
scribed in Section 3.4.

3.3 Point tracking
Point tracking keep tracks of every point found using a
vector that stores tracks. As illustrated in Fig. 3, a track
records the information of a feature point’s color, 2D lo-
cations, and the key frame IDs. Every non-duplicate fea-
ture point detected by previous procedure will be saved
as a track. Every coordinates of a feature point in key

frames are stored in the 2D point vector respectively. In
order to tell which projection matrix P = K[R|t] is related
to a single 2D point, the first frame ID and the last
frame ID are also recorded. And the track also reserves
an entry which stores 3D point coordinate. Therefore, it
represents a feature point in the real world captured by
a camera and will eventually be reconstructed into a 3D
point in the world coordinate.
As illustrated in Fig. 4, for every point, the system

checks if the point already exists in any track and cate-
gorizes each of them as either a new point or an old
point. That is, the system checks whether the coordinate
of an input point-match matches the newest point
stored in any track or not. For example, there is a fea-
ture point-match q and its corresponding point q ' in the
previous key frame (first camera) and current key frame
(second camera), respectively. If the point q exists in one
of the tracks in the track vector, the point q ' is consid-
ered as an old point which already has a track and the
information of that track will be extended with the
point. Extending a track means pushing the point q ' into
the 2D point vector in the containing track and updating
its last frame ID to be current key frame ID. On the
contrary, if the point q does not exist in the track, it is
considered as a brand new point and the system will cre-
ate a new track for the point. The new track first saves
the color information of point q '. And the 2D points q
and q ' will be pushed into 2D point vector in an order
with respect to previous key frame ID and current key
frame ID. These IDs are saved in the first frame ID and
the last frame ID, respectively. Finally, the new track is
pushed into the track vector.
Besides categorizing every input point, the system also

checks the track vector and finds the track which has
not been touched in the categorizing step. The track that
has not been touched means that its corresponding fea-
ture point does not found in the current key frame by
the previous procedure in Section 3.1. In this case, we
assume that the point has been shifted out of the bound-
ary of the camera and will not appear any more. These
untouched tracks will be erased from the vector and
pushed to the next procedure in section 3.4 which does
triangulation and reconstructs the 3D point.

3.4 Triangulation
The triangulation process reconstructs a 3D point from
a pair of known cameras and the corresponding 2D
points. Recall Eq. (1), although the wanted 3D point can
be calculated directly by reprojecting the 2D point to 3D
point, the solution will not be sufficiently correct be-
cause there are errors in the measured points q and q ’.
This means that, by reprojecting the points q and q ', it
usually does not exist that a point Q satisfies q = PQ and
q ' = P 'Q simultaneously, where q ' and P ' represent the

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 5 of 14

2D point and the projection matrix of the second cam-
era. These points q and q' also do not sufficiently satisfy
the epipolar constraint q' TFq = 0. Therefore, the direct
linear transformation (DLT) [29] is proposed to achieve
a closer solution to the ideal Q.
The DLT method combines q = PQ and q ' = P 'Q into

a form of YQ = 0. First, it assumes:

q � PQ ¼
q1
q2
1

2
4

3
5�

P11 P12

P21 P22

P31 P32

P13 P14

P23 P24

P33 P34

2
4

3
5

Q1

Q2
Q3

1

2
64

3
75 ¼ 0

ð7Þ

This equation is true because from Eq. (1), we know q =
PQ and the cross product of q and q itself, which is q × q
must be a zero vector. By expanding Eq. (7), it gives three
equations:

p1TQð Þ−q1 p3TQð Þ ¼ 0
q2 p3TQð Þ− p2TQð Þ ¼ 0

q2 p1TQð Þ−q1 p2TQð Þ ¼ 0
ð8Þ

Where piT means the transpose of ith row of the pro-
jection matrix P. Hence, an equation of the form YQ = 0
can then be composed with:

Y ¼

p1Tð Þ−q1 p3Tð Þ
q2 p3Tð Þ− p2Tð Þ
p01T

� �
−q01 p03T

� �
q02 p03T
� �

− p02T
� �

2
66664

3
77775 ð9Þ

The first two equations from (9) have been included
for each camera, which provide totally four equations
and four homogenous unknowns. This homogenous lin-
ear equation YQ = 0 can be solved by considering Q as a
null space of Y. And because we are using the homoge-
neous coordinate system, the solution Q, which is a 4-
vector, needs to be normalized so that the last coordin-
ate of itself equals to one.
Since the parameters used by the triangulation proced-

ure are measured point-match from Section 3.1 and the
estimated projection matrix from Section 3.2, both of
them may include noises. In this case, the reconstructed
3D point cannot be reconstructed at an ideal location.
The reconstructed 3D point will locate within the area
between the rays from the camera through the measured
points. The more parallel of these rays become the larger
of the shaded area it will be. This means that the small
camera movements in all six directions may cause a
poor triangulating solution. The small movement can
mostly be solved by point tracking in Section 3.3 be-
cause we always use the first found key frame and the
last found key frame of a feature point to do the

Fig. 3 Data structure of the track vector and a track

Fig. 4 Point checking checks for every input point

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 6 of 14

triangulation. This keeps the triangulation procedure
that always uses the key frames with longest camera dis-
tance. However, the reconstructed 3D points might still
contain noises. If the precision is the priority order, it is
necessary to do a further refinement in the end of the
program on these reconstructed 3D points.

3.5 Bundle adjustment
The bundle adjustment is a method that solves the prob-
lem of simultaneously refining the 3D coordinates, the
parameters of the camera motion, and the characteristics
of cameras. As described in Sections 3.2 and 3.4, if the
image measurements are noisy, the camera poses are
not flawlessly precise and the Eq. (1) q = PQ will not be
satisfied exactly. In this case, an optimization is needed
to minimize the reprojection error between the image
points of observed and predicted image points.
Consider a reconstructed scene which consisting a 3D

point Qj that is seen by the corresponding cameras with
projection matrices Pi. These parameters are estimated
from the measured 2D points qij , which are correspond-

ing to the jth 3D point and measured by the ith camera.
If the image measurement noise is Gaussian, the bundle
adjustment can be referred to a maximum likelihood es-
timator. The refined 3D points are represented by Q̂j ,

and the refined projection matrices are represented by

P̂ i . These parameters minimize the image distance d

q ̂j i; q
i
jÞ

�
between the homogeneous points q ̂j i and qij .

The q ̂j i is the reprojected 2D point calculated from

P̂ iQ ̂
j by Eq. (1).

argmin
^
Pi;

^
Qj

Xm;n

i;j

d ^P
i^Qj; q

i
j

� �2

ð10Þ

The proposed method uses the Levenberg-Marquardt
algorithm [29, 31] that replaced the Gauss-Newton iter-
ation with the augmented normal equations:

JTJþ λI
� �

δ ¼ −JT�

ð11Þ

Where I is the identity matrix and λ is the adjusting
factor that varies from iteration to iteration. If error de-
creases, then λ gets smaller; otherwise, it gets larger.
Because all 2D points are not necessarily corresponded

to every projection matrix, the algorithm became a
sparse Levenberg-Marquardt algorithm. In the case of
bundle adjustment, there are two sets of parameters, A
and B, where A is related to projection matrices and B is
related to 3D points.

A ¼ ∂ q ̂

∂P

� 	
and B ¼ ∂ q ̂

∂Q

� 	
ð12Þ

Apply sets A and B into equation Jδ = ϵ. It can get the
form of:

AjB½ � � diag 1þ λð Þ � δP
δQ

� 	
¼ � ð13Þ

Then the normal equation of Jδ = ϵ, which is (14), will
be solved under the form of:

And it can be abbreviated into:

U W
WT V

� 	
δP
δQ

� 	
¼ �A

�B

� 	
ð15Þ

Where U = [ATA] × diag(1 + λ), V = [BTB] × diag(1 + λ)
and W= [ATB].
In the beginning of solving Eq. (15), both sides of the

equation are multiplied on the left by I −WV−1 0I

 �

,
where it assumes V as an invertible matrix, resulting in:

U−WV−1WT 0
WT V

� 	
δP
δQ

� 	
¼ �A−WV−1�B

�B

� 	
ð16Þ

This step eliminates the top right block of the matrix
U W
WT V

� 	
, making the top half equation of (16) to be:

U−WV−1WT
� �

δP ¼ �A−WV−1�B ð17Þ

Since the error vector can be calculated by computing
the error between reprojected position from 3D point
and the measured 2D point, δP is the only unknown in
the equation. Hence, δP can be found by solving Eq. (17)
and the value of δQ can be found by the bottom half
equation of (16) while the value of δP is already known.

VδQ ¼ �B−WTδP ð18Þ

After δP and δQ are computed, the parameters of P
and Q are replaced by new (P + δP) and (Q + δQ), re-
spectively. And there will be a new error vector ϵ which
is computed from these new parameters. If the error de-
creases, the system scales the factor λ down and pro-
ceeds to the next iteration. Otherwise, it reverts the
parameters to the old parameter values and tries again
with the scaled up factor λ. In the end, the iteration con-
tinues until the error has minimized below the threshold
or the maximum number of iterations is reached.

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 7 of 14

4 Experimental results
The system is tested with a surface tablet with intel Core
i3-4020Y running at 1.5 GHz and a personal computer
with an intel Core i7-4770 CPU running at 3.4 GHz. In
the experiment, our system is able to work faster than 1
fps on tablet and 5 fps on PC depending on the size of
input video, the amount of feature points, and the mov-
ing speed of the camera. We compare our method to
other 3D reconstructing methods, the SfM methods
[12, 14, 15]. These SfM methods focus on the precision,
and it was designed for reconstructing a vast scenery.
Hence, their methods always take minutes or even
hours to finish the whole process. The first one we are
going to test is the Bundler: SfM for unordered image
collections [12, 13]. It is a well-known SfM method that
can solve a large amount of images with different in-
trinsic parameters by checking the EXIF data of every
photo. VisualSFM [14] and OpenMVG [15] are similar
methods that can also solve a large amount of images,
but with different feature detecting, matching, tracking,
outlier removing, and distortion recovering technique.
Furthermore, they also improve the speed with the
multi-thread technique. On the contrary, in the case of
using a continuous video taken by a single moving
camera, we provide a much faster method running in a
single thread that was able to acquire a compromise so-
lution in real time.
There are four different video sequences that are used

for testing. Two videos were taken indoors and the other
two were taken outdoors. And these sequences were
captured by a hand held camera, and every frame was
extracted into PNG files. We first compare the timing
results in Section 4.1 and then compare the result of 3D
reconstruction in Section 4.2.

4.1 Timing results
The timing results for sequence 1 (illustrated in Fig. 5 in
Section 4.2) using all frames as the input image are
shown in Table 2. As the table shows, the OpenMVG

runs very fast because their method can run with all 8
logical cores on our PC. In contrast, both Bundler and
VisualSFM provided the results that with denser or
more precise point clouds (Fig. 6) at the cost of long
computation time. However, our method still runs faster
than all others while the point cloud of our result (Fig. 6)
is still precise and dense enough. In fact, our method
can run fast because it is suited for the continuous video
sequences. Therefore, since these SfM methods do not
need a continuous video as the input, we further tested
their methods with fewer inputs in order to achieve
similar time cost with our method. As the timing result
shown in Table 3, the computation times are dramatic-
ally reduced to less than 3 min in average. Although the
timing result of OpenMVG is better than ours, our re-
sult of 3D reconstruction is way better than theirs ac-
cording to test results in Section 4.2. Furthermore, our
method is faster than Bundler and VisualSFM while our
3D reconstruction results are better than the result of
the Bundler and VisualSFM in Section 4.2. On the other
hand, compared with the proposed method using PC,
we further tested our method using a tablet listed in
Table 4. And in order to show the performance for the
real-time usage, as listed in Table 5, our method works
more than 5 fps on PC and 1 fps on a tablet.

4.2 3D reconstruction results
The 3D reconstructed results are tested with four differ-
ent video sequences from sequence 1 through sequence
4, and the results from each method are printed with the
cloud of points in the following figures in this section.
Sequence 1 is an indoor video sequence, which con-

tains 349 frames as illustrated in Fig. 5. The recon-
structed point clouds are illustrated in Fig. 6. We can

Table 2 The timing results of using all frames (examined on PC)

Bundler [12] VisualSFM [14] OpenMVG [15] Proposed

Sequence 1 51 min 36 s 42 min 6 min 7 min 17 s 1 min 24 s

Fig. 5 Snapshot of sequence 1. Indoor, 349 frames, 13.9 s, 853 × 480, 16:9

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 8 of 14

see that the results of Bundler and OpenMVG are indis-
tinct, and the VisualSFM gives the rather precise result.
On the contrary, the proposed method was also able to
give the precise results.
As mentioned in Section 4.1, since these SfM

methods do not need a continuous video as the in-
put. We further tested their methods with fewer in-
puts in order to achieve similar time cost with our
method in Fig. 7. So the SfM methods will use one
fifth of all frames (70 frames) for sequence 1 as the
input images. For the result of OpenMVG with 70
frames, it does not seem to change very much with
fewer input images. And the result of the Bundler is
too indistinct to distinguish between the stuffs pla-
cing on the table. On the other hand, VisualSFM
suffers from fewer input images and the result of
point cloud becomes sparser than theirs before. In
this case, the result of our method is the clearest 3D
point cloud than the others.

Sequence 2 is an indoor video as illustrated in Fig. 8.
There is a finger blocking the left side of view in the
video for 22 frames. As for SfM methods, the one eighth
of 534 frames (67 frames) are used as the input base on
the timing result (Table 3). And there are 3 fingers
blocking the frames in those 67 frames.
The result for sequence 2 is printed in Fig. 9. There is

a reason that the result of Bundler still gives the ambigu-
ous result even with the manual-preset focal length. The
results indicate that the Bundler might be heavily
depended on the EXIF data which is included in the file
of a photo from digital camera. And in our testing video
sequences, there is no photo EXIF data that exists. As in
Fig. 9, OpenMVG gives the precise but very sparse result
while the result of VisualSFM is much denser than the
OpenMVG. However, the result of proposed method is
still the clearest among other results.
Sequence 3, as shown in Fig. 10, is an outdoor

scene with a pond that can influence the feature-
tracking methods. It is because the water may reflect
the scenery with ripple and confuse the feature-
matching methods. Similarly, there are one tenth of
1601 frames (160 frames) that are used as the input
of the SfM methods. And for the results in Fig. 11,
OpenMVG produces the scenery that was able to be
recognized, but it produces the result with the wrong
scale of the distances. The VisualSFM reconstructs a

Table 4 The timing results of the proposed method using all
frames (on tablet)

Sequence 1 Sequence 2 Sequence 3 Sequence 4

Timing 51 min 36 s 42 min 6 min 7 min 17 s 1 min 24 s

Fig. 6 The comparison of results for sequence 1

Table 3 The timing results of using partial frames and the
proposed method using all frames (on PC)

Bundler [12] VisualSFM [14] OpenMVG [15] Proposed

Sequence 1 70 frames 349 frames

5 min 52 s 2 min 20 s 34 s 1 min 24 s

Sequence 2 67 frames 534 frames

2 min 57 s 2 min 18 s 32 s 1 min 12 s

Sequence 3 160 frames 1601 frames

46 min 03 s 11 min 19 s 1 min 19 s 5 min 22 s

Sequence 4 33 frames 486 frames

2 min 08 s 1 min 49 s 15 s 1 min 24 s

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 9 of 14

precise and a large area of results while our result
provides a denser result.
Sequence 4 is an outdoor video with the forward cam-

era movement as illustrated in Fig. 12. There are 33
frames used as the input images for SfM methods (one
fifteenth of 486 frames). As the result in Fig. 13, both
VisualSFM and OpenMVG give the precise results.
Nevertheless, the OpenMVG gives sparser results than
the VisualSFM, and our proposed method is the densest
result with precision among them.

5 Discussion
Based on the inquisition, methods that only use
camera work slower than the methods with add-
itional equipment because these vision-based
methods need time to calculate the depth informa-
tion. For mono vision systems, the most important
issues are the precision and the speed because the
actual camera position can be only estimated from
changes in camera frames. In this case, most of the
SfM methods [12, 15] use the famous SIFT feature

detecting and describing method that costs a lot
more time to process, and this is the reason why
SLAM [11] systems usually use FAST corner de-
tector that can help them achieve the real-time
performance. The SLAM system maintains their ro-
bustness by loop closure detection using the map
they built. For the proposed method, we also use the
FAST corner detector to accelerate the process.
Moreover, different from SLAM system, the pro-
posed method did not build the map because doing
so usually need to parallelize the program that is
more unsuitable to implement on the mobile devices.
Since our main priority is the processing speed and
the density of points, we simply maintain the preci-
sion by carefully choosing the key frame, so the pro-
posed method’s available building area will be
smaller than SfM or SLAM methods. However,
among the systems building the point cloud, the
proposed method uses a continuous video, and it
can process very fast and maintain precision in a
certain area.

Fig. 7 The comparison of results for sequence 1. Bundler, OpenMVG, and VisualSFM use partial frames

Table 5 Time cost per frame with all four video sequences

Sequence 1 Sequence 2 Sequence 3 Sequence 4

PC Tablet PC Tablet PC Tablet PC Tablet

3D points 18,129 15,561 15,057 22,841 35,717 36,528 39,682 36,012

Feature processing (ms/frame) 72.94 211.95 56.25 204.81 171.20 589.85 122.27 390.18

Pose estimation (ms/keyframe) 117.88 170.85 549.53 2300.3 120.28 286.22 135.42 352.04

Point tracking (ms/keyframe) 57.45 81.92 51.59 166.38 45.26 169.89 64.75 158.944

Triangulation (ms/keyframe) 17.07 53.67 6.62 18.06 20.94 81.60 33.96 55.5213

Average FPS 11.06 4.17 8.21 2.02 5.34 1.57 6.68 2.18

Note that only feature processing procedure will work at every frame and other three procedures will work while the key frame was selected

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 10 of 14

6 Conclusions
Over the years, the computer vision community has
contributed many efforts improving the quality of the re-
constructed 3D point cloud. As part of this effort, we
have demonstrated a system that generates an accurate
point cloud with high speed. Comparing to other exist-
ing 3D reconstructing methods, we are able to use only

a mono video sequence as an input on a single CPU and
reconstruct the 3D point cloud as dense as possible.
The most critical part for a mono 3D reconstruct-

ing method is the heavy load on estimating the cam-
era position. Unlike the stereo system, the camera
position can only be guessed from the projection be-
tween frames. The proposed method is able to lower

Fig. 9 The comparison of results for sequence 2. Bundler, OpenMVG, and VisualSFM use partial frames

Fig. 8 Snapshot of sequence 2. Indoor, 534 frames, 17.8 s, 853 × 480, 16:9

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 11 of 14

the load on estimating camera position while losing
very little precision. Furthermore, with the lack of
camera baseline as a reference, the estimated camera
position is usually gained not only with noise but also
the ambiguous scale between the pixels and the real

world. In this case, despite that the proposed system
is able to reconstruct a scenery within an area, this
system will also encounter some scale drift while the
video sequence was recorded along a very long
distance.

Fig. 11 The comparison of results for sequence 2. Bundler, OpenMVG, and VisualSFM use partial frames

Fig. 10 Snapshot of sequence 3. Outdoor, 1601 frames, 53.4 s, 853 × 480, 16:9

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 12 of 14

Fig. 12 Snapshot of sequence 4. Outdoor, 486 frames, 16.2 s 853 × 480, 16:9

Fig. 13 The comparison of results for sequence 2. Bundler, OpenMVG, and VisualSFM use partial frames

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 13 of 14

Last but not least, we hope that this kind of fast and ac-
curate 3D reconstructing algorithm can be promoted and
become a readily available tool for artist, architect, engin-
eer, and everyone whoever wants to build a 3D scenery.

Acknowledgements
The authors would like to thank the Ministry of Science and Technology in
Taiwan for supporting this research under the project MOST104-2220-E-011-001-.

Authors’ contributions
B-YS carried out the algorithm studies, platform implementation and the
simulation and drafted the manuscript. C-HL participated in the algorithm
studies and helped to draft the manuscript. Both authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 2 August 2016 Accepted: 8 February 2017

References
1. A Fenster, DB Downey, Fast parametric elastic image registration. IEEE Eng

Med Biol Mag 15(6), 41–51 (2002)
2. JM Lopez-Sanchez, J Fortuny-Guasch, 3-D radar imaging using range

migration techniques. IEEE Trans. Antennas Propag. 48(5), 728–737 (2002)
3. B Douillard, J Underwood, N Kuntz, V Vlaskine, A Quadros, P Morton, A

Frenkel, On the Segmentation of 3D LIDAR Point Clouds (IEEE International
Conference on Robotics and Automation, Shanghai, 2011), pp. 2798–2805

4. F Endres, J Hess, N Engelhard, J Sturm, An Evaluation of the RGB-D SLAM
System (IEEE International Conference on Robotics and Automation (ICRA),
Saint Paul, 2012), pp. 1691–1696

5. J Chen, D Bautembach, S Izadi, Scalable real-time volumetric surface
reconstruction. ACM Trans. Graph. - SIGGRAPH 2013 Conference
Proceedings 32(4), 1–16 (2013)

6. Q-Y Zhou, V Koltun, Dense scene reconstruction with points of interest. ACM
Trans. Graph. - SIGGRAPH 2013 Conference Proceedings 32(4), 1–8 (2013)

7. M Nießner, M Zollhöfer, S Izadi, M Stamminger, Real-time 3D reconstruction
at scale using voxel hashing. ACM Trans. Graph. - Proceedings of ACM
SIGGRAPH Asia 32(6), 1–11 (2013)

8. SM Seitz, B Curless, J Diebel, D Scharstein, A Comparison and Evaluation of
Multi-View Stereo Reconstruction Algorithms. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2006, pp. 519–528

9. B Micusik, J Kosecka, Piecewise Planar City 3D Modeling from Street View
Panoramic Sequences (IEEE Conference on Computer Vision and Pattern
Recognition, Miami, 2009), pp. 2906–2912

10. A Geiger, J Ziegler, C Stiller, StereoScan: Dense 3d Reconstruction in Real-time
(IEEE Intelligent Vehicles Symposium, Baden-Baden, 2011), pp. 963–968

11. G Klein, D Murray, Parallel Tracking and Mapping for Small AR Workspaces.
ISMAR '07 Proceedings of the 6th IEEE and ACM International Symposium
on Mixed and Augmented Reality, 2007, pp. 1–10

12. N Snavely, SM Seitz, R Szeliski, Modeling the world from internet photo
collections. Int. J. Comput. Vis. 80(2), 189–210 (2008)

13. S Agarwal, Y Furukawa, N Snavely, I Simon, B Curless, SM Seitz, R Szeliski,
Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)

14. C Wu, Towards Linear-Time Incremental Structure from Motion (International
Conference on 3D Vision, Seattle, 2013), pp. 127–134

15. P Moulon, P Monasse, R Marlet, Global Fusion of Relative Motions for Robust,
Accurate and Scalable Structure from Motion (IEEE International Conference
on Computer Vision, Sydney, 2013), pp. 3248–3255

16. W-C Jhou, W-H Cheng, Animating still landscape photographs through
cloud motion creation. IEEE Trans. Multimedia 18(1), 4–13 (2016). doi:10.
1109/TMM.2015.2500031

17. J Sanchez-Riera, K-L Hua, Y-S Hsiao, T Lim, SC Hidayati, W-H Cheng, A
comparative study of data fusion for RGB-D based visual recognition.
Pattern Recogn. Lett. 73, 1–6 (2016)

18. J Sanchez-Riera, Y-S Hsiao, T Lim, K-L Hua, W-H Cheng, A Robust Tracking
Algorithm for 3D Hand Gesture with Rapid Hand Motion Through Deep
Learning (IEEE International Conference on Multimedia and Expo Workshops
(ICMEW), Chengdu, 2014), pp. 1–6. doi:10.1109/ICMEW.2014.6890556

19. A Saxena, M Sun, AY Ng, Learning 3-D Scene Structure from a Single Still
Image (IEEE 11th International Conference on Computer Vision, Rio de
Janeiro, 2007), pp. 1–8

20. A Gupta, AA Efros, M Hebert, Blocks World Revisited: Image Understanding
Using Qualitative Geometry and Mechanics. Computer Vision - ECCV 2010:
11th European Conference on Computer Vision, 2010, pp. 482–496

21. AJ Davison, ID Reid, ND Molton, O Stasse, MonoSLAM: real-time single
camera SLAM. IEEE Trans Pattern Anal Mach Intell 29(6), 1052–1067 (2007)

22. A Akbarzadeh, J-M Frahm, P Mordohai, B Clipp, C Engels, D Gallup, M
Pollefeys, Towards Urban 3D Reconstruction from Video (Third International
Symposium on 3D Data Processing, Visualization, and Transmission, Chapel
Hil, 2006), pp. 1–8

23. DG Lowe, Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vis. 60, 91–110 (2004)

24. H Bay, T Tuytelaars, LV Gool, Speeded-up robust features (SURF). Comput.
Vis. Image Underst. 110(3), 346–359 (2008)

25. E Rublee, V Rabaud, K Konolige, G Bradski, ORB: an Efficient Alternative to
SIFT or SURF. International Conference on Computer Vision (IEEE, Barcelona,
2011), pp. 2564–2571. doi:10.1109/ICCV.2011.6126544

26. PF Alcantarilla, J Nuevo, A Bartoli, Fast Explicit Diffusion for Accelerated
Features in Nonlinear Scale Spaces (British Machine Vision Conference
(BMVC), Bristol, 2013), pp. 1–11

27. E Rosten, T Drummond, Machine Learning for High-Speed Corner Detection.
Proceedings of the 9th European conference on Computer Vision, 1, 2006,
pp. 105–119

28. J-y Bouguet, Pyramidal Implementation of the Lucas Kanade Feature Tracker.
Intel Corporation, Microprocessor Research Labs, 2000, pp. 1–9

29. R Hartley, A Zisserman, Multiple View Geometry in Computer Vision (second
ed) (Cambridge, Cambridge University Press The Edinburgh Building, 2004)

30. MA Fischler, RC Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography.
Commun. ACM 26, 381–395 (1981). doi:10.1145/358669.358692

31. C Zach, Robust bundle adjustment revisited. Comput. Vis. 8693, 772–787
(2014). doi:10.1007/978-3-319-10602-1_50

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Sung and Lin EURASIP Journal on Image and Video Processing (2017) 2017:18 Page 14 of 14

http://dx.doi.org/10.1109/TMM.2015.2500031
http://dx.doi.org/10.1109/TMM.2015.2500031
http://dx.doi.org/10.1109/ICMEW.2014.6890556
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1007/978-3-319-10602-1_50

	Abstract
	Introduction
	Related works
	Proposed method
	Feature processing loop
	Pose estimation
	Point tracking
	Triangulation
	Bundle adjustment

	Experimental results
	Timing results
	3D reconstruction results

	Discussion
	Conclusions
	Acknowledgements
	Authors’ contributions
	Competing interests
	References

