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Abstract

Over the years, maritime surveillance has become increasingly important due to the recurrence of piracy. While
surveillance has traditionally been a manual task using crew members in lookout positions on parts of the ship, much
work is being done to automate this task using digital cameras coupled with a computer that uses image processing
techniques that intelligently track object in the maritime environment. One such technique is level set segmentation
which evolves a contour to objects of interest in a given image. This method works well but gives incorrect
segmentation results when a target object is corrupted in the image. This paper explores the possibility of factoring in
prior knowledge of a ship’s shape into level set segmentation to improve results, a concept that is unaddressed in
maritime surveillance problem. It is shown that the developed video tracking system outperforms level set-based
systems that do not use prior shape knowledge, working well even where these systems fail.
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1 Introduction
While the word ‘pirate’ brings to mind thoughts of the
swashbuckling, one-eyed seafarers of childhood fantasy,
the term still, unfortunately, has use in today’s modern
world. Costing an estimated US$13 to 16 billion a year [1],
piracy remains a pertinent problem in areas such as the
coast of Somalia and theGulf of Guinea. Despite increased
security, piracy in these areas is increasing over the years.
While recent years have seen a slight drop in reported
incidents of piracy, 439 attacks were reported in 2011
according to the International Maritime Bureau [2].
Due to the increased threat of piracy, surveillance is an

absolute must on cargo ships travelling in these danger-
ous areas. While radar systems have been extensively used
in maritime environments, these generally require large,
metallic targets. Modern pirates favour small, fast rigid
inflatable boats that are mainly non-metallic and thus
difficult to detect [3]. While the solution to this would
seem to be the use of manual detection using dedicated
crew members on board, the small number present at
any given time makes this unfeasible. Unlike humans that
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grow tired, automated video surveillance systems are able
to constantly monitor camera feeds and keep track of a
number of objects of interest around the ship.
Szpak and Tapamo [4] present an approach that at-

tempts to track objects using a closed curve in the image
(a method known as level set segmentation) after they
had been detected using a motion-based detection sys-
tem. While the tracking results are very good, object
detection suffers from detection of a large number of
non-ship objects due to motion from waves. To address
these shortcomings, this work investigates the possibil-
ity of integrating prior-known shape information into
segmentation.
The rest of the paper is structured as follows: Section 2

covers the background on level set methods and their
implementation and reviews the theory associated with
shape priors. Section 3 discusses applications of image
processing and level sets within the maritime surveil-
lance environment. Section 4 introduces the proposed
video tracking system and details various subsystem func-
tionalities. The various subsystems are implemented in
Section 5, and the final system is established. Section 6
concludes and outlines future work.

© 2013 Frost and Tapamo; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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2 Background
There have been a number of attempts to address the
problem of detecting and tracking objects at sea. Some
of the main tasks to achieve this goal are understanding
of the nature of the sea clutter and its modelisation for
accurate segmentation of moving objects.
In [5], temporal characteristics of sea clutter and that of

a range of small boats are analysed using a comprehen-
sive set of recorded datasets. This is done in an attempt
to understand the dynamics and associated reflexivity of
small boats. An empirical sea model is then derived. It
then allows the development of advanced detection and
tracking algorithms, which will help improve the perfor-
mance of surveillance andmarine navigation radar against
small boats.
Vicen-Bueno et al. [6] propose neural networks-based

signal processing techniques to reduce sea clutter. In [7],
several machine vision techniques that could help in eas-
ing the search tasks in maritime environment are investi-
gated. Hidden Markov model-based tracking models are
then used to design a system that improves detection
performance.
In this paper we propose an approach to ship detec-

tion and tracking based on active contours. Active contour
methods are segmentation techniques that use an iter-
atively evolving contour or interface in an image that
separates different regions of interest. Active contours can
be expressed using one of two principle approaches [8]:

• Explicit or Lagrangian approach resulting in an
interface known as snake.

• Implicit or Eulerian approach resulting in an
interface called a level set.

Kass et al. [9] initially introduced the concept of active
snakes for expressing the contour in an image in which
a parameterised spline is guided in the image to a desir-
able position by a number of forces. The major problem
with active snakes is its inability to deal with changes in
topology [10]. Closed contours expressed as active snakes
are unable to deal with splitting or merging of regions in

an image. Level set methods were originally introduced
by Osher and Sethian [11] as a method to evolve a con-
tour with a speed proportional to its curvature. The main
advantage of this method is that, unlike active contours,
it allows for cusps, corners and automatic topological
changes [10].
Given an image I(x, y), where (x, y) are image coordi-

nates, a three-dimensional surface defined by a level set
function �(x, y) is defined on top of it. The contour C is
in the image and implicitly defined as the zeroth level set
(hence the name) of the level set function φ:

C = {(x, y)|φ(x, y) = 0}. (1)

To visualise this expression, see Figure 1 where a con-
tour in the image shown in Figure 1a is defined as part of
the image in Figure 1b that is cut by the level set surface at
� = 0 .
To ensure a one-to-one mapping between the level set

function and its corresponding contour, the level set func-
tion� is constrained to a signed distance function, that is,
|∇�| = 1 almost everywhere with � > 0 inside the con-
tour and � < 0 outside the contour [12]. Informally, this
can be thought of as the distance to the zero-level contour
inside the contour and its additive inverse outside.

2.1 Chan-Vese energy functional
The original implementation introduced in [11] attempts
to simulate active snake behaviour using a level set func-
tion’s contour. The contour is evolved according to active-
snake-like forces F in the normal direction to the contour
(in the image) to simulate the behaviour of active snakes.
To do so,the following differential equation is used:

∂�

∂t
= F|∇�| (2)

Rather than using a predefined set of forces in the image,
variational level set methods seek to produce a level set
function that minimises a predefined cost function, more
specifically known as energy functional also sometimes
called a cost functional.

Figure 1 Example of a contour in an image (a) and the level set function that defines it (b).
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Chan and Vese introduce a regional-based variational
formulation in [10] that is designed to work with images
without edges by minimising the variation in pixel inten-
sity inside and outside the contour. The expectation is
to move the level set contour around an image segment
that is homogenous with respect to pixel intensity. The
Chan-Vese energy consists of two internal energies, Elength
and Earea, that penalise the length of the contour and
the area within it respectively (therefore favouring small,
short contours) and two external energies, Evar_inside and
Evar_outside, that penalise variation in pixel intensity inside
the contour and outside the contour respectively:

Ecv = = μElength+νEarea+λ1Evar_inside+λ2Evar_outside,
(3)

whereμ, ν, λ1 and λ2 are parameters weighting the impor-
tance of their respective penalty terms. The contour needs
to be evolved until Ecv is minimised.
Given an image, I, with its domain�, the inner and outer

pixel variation terms can be expressed as

Evar_inside =
∫

�

|I − c1|2H(�)dx. (4)

Evar_outside =
∫

�

|I − c2|2(1 − H(�))dx, (5)

where H is the Heaviside function defined as

H(x) =
{
1 if x ≥ 0

0 if x < 0.
(6)

In a level set formulation, the Heaviside function is used
to specify areas inside the contour, where H(�) = 1 , and
outside the contour, 1 − H(�) = 1. The values c1 and
c2 are the average pixel intensities inside and outside the
level set contour respectively calculated as

c1(�) =
∫
ω
I × H(�)dx∫
�
H(�)dx

. (7)

c2(�) =
∫
ω
I × (1 − H(�))dx∫
�
(1 − H(�))dx

. (8)

The resulting evolution equation that minimises the
functional in Equation 9 is as follows:

∂�

∂t
=δ(�)

[
μdiv

( ∇�
|∇�|

)
−ν−λ1(I−c1)2 + λ2(I − c2)2

]
.

(9)

2.2 Level sets with shape priors
Shape priors can be very useful in segmentation, mainly
when the object to be segmented is corrupted. This is
often the case in real-world applications, such as mar-
itime surveillance. In [13], it is shown how an object
partially occluded can be accurately segmented. Adding

shape knowledge can be achieved by modifying a vari-
ational energy functional designed for segmentation by
adding an additional term that penalises deviation from a
particular shape.
The majority of techniques that incorporate shape pri-

ors use a linear combination of two functionals with one
as a common segmentation functional (as discussed in
Equation 9) and the other a shape difference [14]. The pur-
pose of the shape difference term is to penalise level set
contours that deviate from a predefined shape. A rudi-
mentary example introduced by Rousson and Paragios
[15] is the squared difference between the segmenting
level set function � and a predefined level set function
that incorporates the desired shape 
 :

Eshape(�,
) =
∫

�

(�(x) − 
(x))2dx. (10)

The term in Equation 10 is added to the segmentation-
based term (such as Chan-Vese). It is often multiplied by a
weighting factor α to control the balance between the two
terms:

E(�,
) = Ecv(�) + αEshape(�,
). (11)

Parametric methods of incorporating shape informa-
tion impose this knowledge directly into the level set by
defining the level set as the output of some parametric
function andminimising segmentation energy functionals
with respect to these parameters. Tsai et al. [16] introduce
a parametric level set function that is an affine trans-
formed version of a prior-known shape, defined in a level
set function 
 , for the use of shape priors. Parameters
controlling translation, scale and rotation of the origi-
nal shape 
 are then optimised, rather than the level set
function 
 .
The use of multiple shape priors is documented in the

literature and involves the use of selective and compet-
ing shape priors. Tsai et al. [16] propose expressing a level
set function as a parametric combination of the principle
components from a set of training shapes. In [15,17], the
authors create amodel of a set of prior shapes by assuming
that shape priors follow pixel-wise Gaussian distributions.
Cremers et al. [18] implement a shape model using a ker-
nel density estimator to produce a statistical shape model
that can model fairly distinct training shapes. A shape dis-
tance measure is then defined based on Chan and Zhu’s
work [14].

3 Image processing approach to ship tracking
3.1 Traditional approach
The maritime environment is a particularly challenging
one for tracking, and thus, themajority of works discussed
here deal with very low level solutions to the problem. As
the ocean, constantly filled with moving waves, is prone to
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producing erroneous detection with methods that detect
moving objects, some authors choose to characterise it
and label pixels that do not match this characterisation
as objects of interest. Sanderson et al. [3] implement
an algorithm that does this using frequency information.
Smith and Teal [19] implement a similar approach using a
histogram-based descriptor of the appearance of the sea.
Voles and Teal [20] propose a method that is based on the
use of crude descriptors of tiles in an image; the image is
divided into overlapping tiles that increase in size as they
get closer to the bottom of the image. This method often
results in imprecise segmentation results. Voles et al. [21]
improve the method presented in [20] by adding motion
information obtained using frame differencing; the algo-
rithm designed is purely pixel-based and therefore fails to
segment larger maritime objects.
Gupta et al. [22] describe the development of the Mar-

itime Activity Analysis Workbench; this project aims at
overcoming limitations of the current maritime surveil-
lance systems. In [23], Ponsford et al. present the design
and implementation of an integrated maritime surveil-
lance system based on high-frequency surface wave
radars. Leung et al. [24] combine genetic algorithm and
radial basis function neural network to search optimal val-
ues of a detector model. This model is then used to detect
small surface targets in various sea conditions. In [25], an
estimation of the ship size using an ANN-based clutter
reduction system is proposed.
Socek et al. [26] present a method of combining exist-

ing object detection methods with colour information. It
initially segments the foreground using background mod-
elling with a Bayes decision framework that works best
for backgrounds with complex variations and that are
not periodic. In a maritime environment, the algorithm
suffered from poor segmentation results having inaccu-
rate boundaries and many scattered pixels. The authors
seek to solve these issues by combining results with that
of colour-based segmentation. Colour segmentation is
treated as a graph-partitioning problem, and combining
it with background subtracted output results in enhanced
performance. There have also been many other attempts
to build maritime surveillance systems; some example
could be found in [27,28].

3.2 Level set approach
Szpak and Tapamo [4] introduce an approach that uses
level set methods as a way to track detected maritime
objects in a scene. Object detection is implemented using
a modified method of single Gaussian background sub-
traction. Where normal background subtraction deals
with pixels in isolation, spatial-smoothness constraint is
enforced to deal with neighbourhoods of pixels. The con-
straint assumes that real-world objects are spatially con-
sistent entities and requires that a whole group of pixels,

rather than single ones, exhibit motion behaviour before
marking them as such. The output of this method is fur-
ther segmented using level set methods. The contour is
used in the tracking phase as described by Bertalmio
et al. [29], where the final contour from the previous frame
is used as an initial contour in the next. The algorithmwas
tested in 17 test sequences and showed promising results.
It was able to successfully track in all but three of the 17
given sequences. The algorithm even showed good results
in overcast and rainy conditions. It failed in sequences
where there was insufficient contrast between the ocean
and the target and thus fails to pick up specific motion of
the target, when the target moves too slowly and is thus
considered part of the background and when there is a
lot of glint in the scene. Due to its high success rate and
possible avenues for improvement, it was decided to base
further work on the model proposed in [4].

4 Proposedmodel of ship tracking using level
sets with shape priors

The fundamental contribution of the work presented in
this paper is the proposition of a method of incorporating
shape knowledge into the system discussed in [4].

4.1 Model overview
There are two main types of video tracker architec-
ture. These include architectures that apply detection and
tracking separately and those that perform them jointly
[30]. In the first case, possible object regions are pro-
duced by the object detector, and the object tracker makes
correspondences between these regions from frame to
frame. In the second case, the object regions and their
correspondences are jointly estimated by keeping object
and region information from previous frames and sim-
ply updating them for the current one. Level set tracking
falls into the latter architecture of the above examples.
Here the level set segmentation is run on each frame
where the starting contour for each particular frame is
the final contour of its predecessor [31,32]. As the pro-
posed system uses a level set for tracking, it is based
largely around the second architecture. There is, how-
ever, a single difference in that the level set contour is
unable to detect objects by itself and must rely on a sepa-
rate subsystem to initialise it.While this subsystemmainly
serves as a tracker initialisation stage, it is theoretically
a form of object detection and will be thus be labelled
as such. It should be emphasised that unlike the object
detection stage of the separate detector/tracker architec-
ture, this subsystem does not operate on every frame.
While level set segmentation forms an integral part of
the object tracking system, it also forms a part of the
object detector, the details of which will be discussed later.
An overview of the entire proposed system is shown in
Figure 2.
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Figure 2 System overview.

The input to the system is a sequence of grey scale image
frames from a video of a maritime scene. The output of
the system is ideally the same set of image frames with
various maritime objects of interest highlighted by a level
set contour. An overview of how the system functions is
as follows:

• The object tracker does not run until it has received
a set of initial object positions from the object
detector.

• The object detector uses a background subtraction
algorithm that only uses input frames periodically at
a fixed spacing. Only once it is filled a buffer of
frames is it able to produce an output, and so until
then the tracker, and thus the system, has no output.

• Once the buffer is full, the detector is able to output a
set of objects to the tracker.

• Once it has obtained a set of initial object positions,
the object tracker continues to track these objects.

The object detector is consist of a pre-filtering stage,
followed by a background subtraction algorithm. The
resultant binary images are then filtered again in a post-
filtering algorithm to remove false positives in the image.
If it is desired to find a particular shape that is known

beforehand, binary level set shape prior segmentation can
be further applied in a level-set-filtering algorithm before
the input to the object tracker.
The object tracker extracts features of the detected

objects in the first frame after detection to create a model
for each object. For each subsequent frame, the level set
tracking algorithm uses this Figure 3 model, combined
with its shape, to track the object. This information is fed
back into the tracker for use in tracking the object in the
next frame.

4.2 Level set segmentation algorithm
While Szpak and Tapamo [4] used a general level set seg-
mentation algorithm based on the work of Chan and Vese
in [10], the work presented here deals with incorporating
shape knowledge into the system. There is then a need for
a different method to introduce shape priors.

4.2.1 Level set algorithm of Tsai et al.
The system to be designed is based on the work of Tsai
et al. [16]. The method presented in this work is based on
a parametric function, which offers a number of benefits:

• Parametric models allow for a faster evolution that is
less prone to getting stuck in local minima as the

Figure 3 Example of a shape prior. Encoded in function � manipulated using p to produce a level set function 
 that produces a contour in the
image.
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energy is minimised directly by manipulating a few
parameters rather than the entire contour.

• Parametric models do not require function
re-initialisation. The resultant segmenting level set
function is always a transformed version of an
original signed distance function, which itself is thus
a signed distance function.

• The limited degrees of freedom allows for more
‘brute force’ numerical methods of energy
optimisation, which allow the contour to evolve
according to any arbitrary energy functional without
the need for symbolic differentiation.

Tsai et al. [16] deal with the incorporation of multi-
ple shape priors in segmentation. For simplicity, however,
the system described in this paper has been designed to
use a single shape prior. For each sequence that is tested,
the desired shape prior is manually set to the shape of
an object that appears in that sequence. Simplification to
a single shape prior allows the level set function to be
manipulated using a set of pose parameters only (i.e. the
one shape is known in advance and is given by the shape
prior).
The set of pose parameters represented by the vector

p = [ a, b, h, θ ]T is introduced, where a and b control hor-
izontal and vertical translation, h controls the scaling,
and θ controls the rotation. The level set function can be
parameterised in terms of these pose parameters. Con-
sider a level set function 
 that has a contour in the form
of the desired shape prior. The level set function � can be
defined as a translated, scaled and rotated version of this
original function:

�[ p] (x, y) = 
( x̃, ỹ), (12)

where x̃ and ỹ are calculated according to⎡⎣ x̃
ỹ
1

⎤⎦ =T[p]

⎡⎣ x
y
1

⎤⎦

=
⎡⎣ 1 0 a
0 1 b
0 0 1

⎤⎦
︸ ︷︷ ︸

M(a,b)

⎡⎣ h 0 0
0 h 0
0 0 1

⎤⎦
︸ ︷︷ ︸

H(h)

⎡⎣ cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

⎤⎦
︸ ︷︷ ︸

R(θ)

⎡⎣x
y
1

⎤⎦.

(13)

To evolve the energy functional, p is manipulated in
a manner that decreases a predetermined energy func-
tional. This is done using a gradient descent method:

pt+1 = pt − αp∇pE, (14)
where pt and pt+1 are the current and next values of p,
respectively.∇pE is the gradient of the energy with respect
to p, and αp is a step-size parameter controlling the speed
of evolution.

This evolution minimises the energy functional E by
moving p (i.e. a, b, h, θ ) in a direction of decreasing energy.
This is made clearer by expanding p into its various
parameters:

at+1 = at − αa∇aE

bt+1 = bt − αb∇bE

ht+1 = ht − αh∇hE

θ t+1 = θ t − αθ∇θE.

(15)

4.2.2 Modifications to the work of Tsai et al.
The gradient terms ∇aE,∇bE,∇hE,∇θE in Equation 15 are
derived in [16] by symbolically differentiating the energy
functional with respect to each of the parameters. This
process is mathematically complex and undesirable. This
section addresses how to estimate these gradient terms,
thus avoiding the difficult derivation. Provided that the
energy functional is differentiable with respect to its input
parameters, it is possible to estimate the gradient with
respect to each parameter using a numerical method
known as the central difference approximation, thereby
avoidingmathematically complex differentiation. For level
set evolution, the following notation is introduced:

• �a,b,h,θ is the level set function defined by a, b, h, θ .
• E(�a,b,h,θ ) is the energy functional calculated from

�a,b,h,θ .

The gradient term ∇aE, for example, can then be
approximated using the central difference approximation
as

∇aE ≈ E(�a,b,h,θ ) − E(�a−ε,b,h,θ )

2ε
. (16)

This can similarly be repeated for the remaining gradi-
ent terms∇bE,∇hE and∇θE. These are then used to evolve
the pose parameters normally according to Equation 15.
Gradient estimation schemes are in fact more resource
intensive than calculation from symbolically derived gra-
dients as they require recalculation of two new level set
functions and associated energy functionals every time a
gradient is estimated. That being said, their main bene-
fit is that any arbitrary energy functional can be plugged
into the algorithm without the need for complex symbolic
derivations.

4.3 Object detector
4.3.1 Pre-filter
To remove possible noise in the image before it is sent to
the background subtraction stage, a pre-filtermay be used.
Two pre-filters have been proposed: the 3 × 3 Gaussian
filter and the 3 × 3 Median filter.
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4.3.2 Background subtraction
Once the image has been filtered, the system detects
objects using a background modelling and subtraction
algorithm. By producing a model of the background and
subtracting it from the image, it is assumed that what
remains will be objects of interest.
The background model used is based on Elgammal and

Duraiswami’s work [33] that use kernel density estimation
to model the background. Using the previous L values of a
particular pixel value {It−L, It−L+1, . . . , It−1}, the probabil-
ity that the next pixel value It has a value x is estimated as

f (p) = 1
Lh

t−1∑
i=t−L

K
(

p−Ii
L

)
. (17)

K is the kernel with bandwidth h. The Gaussian kernel was
used:

K(u) = 1√
2π

exp
(

−u2
2

)
. (18)

While Silverman [34] shows that the best choice for h for
a Gaussian kernel is

h =
(

σ̂ 5

3n

) 1
5
, (19)

where σ̂ is the standard deviation of the data, in this case
it is the previous L values of the pixel. When a new pixel
value It is observed, the probability of its value is cal-
culated from this density estimate. A high probability of
observation would indicate that the given pixel is likely
part of the background whereas a low probability would
indicate a foreground pixel. The background subtraction
output BSt is thus

BSt(x, y) =
{
1 if ft,(x,y)(It(x, y)) > Th
0 otherwise, (20)

where Th is a predefined threshold that needs to be
decided upon. A number of improvements can be made to
this model to better suit its application of background sub-
traction. It is obvious that more recent pixel values from
P are more relevant to the density estimation. For ker-
nel density estimation with time series data, Harvey and
Oryshchenko [35] suggest using a weighting scheme such
that

f (p) = 1
h

t−1∑
i=t−L

K
(

p−Ii
L

)
× ωi, (21)

where ωi is the weight for the ith kernel. Here
∑n

i=1 ωi =
1. In order to weight more previously viewed pixel values
higher, the following weighting scheme was chosen:

ωi = i
n

(22)

such that the weighting increases linearly with i. This will
ensure that the most recent pixel value will have the high-
est weight. A further modification to the system is the use
of frame spacing. Rather than using the entire set of pre-
vious L pixel values, a buffer of n values is created from
pixels spaced s frames apart:

{It−L, It−L+1, . . . , It−1} → {It−ns, It−(n−1)s, . . . , It−2s, It−s}
(23)

Take the example of a sequence of a fairly slowly moving
object (such as a ship) captured using a high-frame-rate
camera. Suppose a buffer of 50 previous frames is used to
build a background model. The slow speed of the object
combined with the high frame rate of the camera would
probably result in very little object movement for these
frames, resulting in most of the object becoming part of
the background model. By using frames that are spaced
apart, the resultant background model is less likely to
include the object because it will have moved over these
frames. The disadvantage of this method is that this places
an upper limit on how fast an object may be moving so
that it is not missed by the spaced frames. The spac-
ing must be decided upon by the system designer. This
is implemented in the decision block in Figure 2 where
frames are only sent to the object detection stage at fixed
intervals. Obviously, this also means that the background
subtraction stage is not able to provide a corresponding
output for every input frame. This, however, is acceptable
as the object tracker stage keeps track of objects for every
frame after detection.

4.3.3 Post-filtering
A major problem in using background subtraction algo-
rithms alone for maritime surveillance is themotion of the
sea. Although kernel density estimation would be able to
filter out pixels which oscillate between two values, it still
would classify a wave moving across the image, for exam-
ple, as a legitimate motion. It is for this reason that the
binary image is filtered after background subtraction. This
subsection details a number of different filters that can be
used to remove these unwanted white pixels while keeping
the desired ones.

• Motion persistence filtering. Motion persistence
filtering is a novel method introduced by this work
that attempts to remove white pixels that only appear
in a few background subtracted frames. The logic
behind motion persistence filtering is that while
waves will produce legitimate motion pixels in a
background subtraction algorithm, unlike those of
ships, this motion is short-lived and may last merely
over a few frames.
Assuming an input set of motion images
{B1,B2, . . . ,Bt}, this filter operates in a similar
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fashion to a two-dimensional kernel density
estimator: For every white pixel in every image, a
two-dimensional Gaussian kernel is placed (centred)
over the pixel and its surrounding neighbours. The
bandwidth of each Gaussian is set to be the distance
to the nearest white pixel in the image. This builds a
two-dimensional probability estimate, where more
‘persistent’ motion pixels have higher probabilities.
The algorithm proceeds to find pixels connected to
these high-density areas (over a fixed threshold) in
the most recent motion frame Bt . It was empirically
decided to use three previous background subtracted
frames for motion persistence filtering. If background
subtraction with frame spacing is used, there should
be considerable changes in sea motion across these
fames. The threshold for the method was likewise set
at 0.000008.

• Fixed-threshold connected component filtering.
Connected component filtering is a low-level image
processing technique that simply removes connected
components (or blobs) from a binary image
depending on some criteria. The first connected
component filtering algorithm that was proposed
simply removes blobs below a certain threshold on
blob size using 8-connectivity to determine blobs.

• Variable threshold connected component filtering.
Voles and Teal note in [20] that because a maritime
scene is an outdoor one with considerable depth of
field, objects close to the camera are projected near
the bottom of the image and thus appear larger than
those further away from the camera. The second
connected component filtering algorithm is based
around this idea. Here the threshold on blob size is
no longer a preset constant, but a linear function of a
blob’s y-coordinates:

Threshold = M(y). (24)
• Spatial-smoothness filtering. Szpak and Tapamo [4]

suggest that methods based on thresholding the area
of connected components as described above are not
suitable as targets may be smaller than some waves in
the image and thus be erroneously removed. While a
variable threshold should solve this problem, their
suggested method of spatial-smoothness filtering is
implemented for comparison. This technique is built
into the proposed single Gaussian background
subtraction before pixels are thresholded and thus
requires some modification; however, the expected
behaviour is the same. For a pixel at (i, j) with
probability fKDE(I(i, j)), � is calculated for a window
of 2r × 2c pixels around it as

� =
r∑

p=−r

c∑
q=−c

wi+p,j+q× fKDE(I(i+p, j+q)). (25)

� is thus the weighted sum of the input pixel (i, j) and
its neighbours’ probabilities. This effectively is a
smoothing operation before the probability estimates
are converted into a binary image in the background
subtraction algorithm. The output of the background
subtraction (BS) for this pixel is then modified as
follows:

BS(x, y) =
{
1 if � < Th × 2r × 2c

0 otherwise,
(26)

where Th is the background subtraction threshold
normally used. In [4], a 3 × 3 filter is used with
constant weights with values of 1; these parameters
will then be used for testing.

4.3.4 Level set filtering
If the shape of a particular object is known beforehand,
it is possible to filter the binary image further after post-
filtering and detect only blobs that match its shape. Yezzi
and Tsai [36] propose the binary mean model:

Ebinary = −1
2
(c1 − c2)2, (27)

where c1 and c2 are the mean values for the pixels inside
and outside� as calculated by Equations 7 and 10, respec-
tively. This energy tries to separate the image into two
regions of homogeneous pixel intensity by maximising the
difference between c1 and c2. It is known that in an ideal
case, the level set contour sits tightly around a white blob.
In this case, the ideal values for c1 and c2 are known.
Specifically, ideally we have c1 = 1 and c2 = 0. The binary
mean model in Equation 27 is thus modified accordingly:

E = −1
4
[ (c1 − 1)2 + c22] . (28)

The first term of this energy penalises inner mean val-
ues (c1) that are not equal to 1, while the second term
penalises outer mean values c2 that are not equal to 0. This
energy is minimised according to the modified version
discussed above. The segmentation is applied for every
blob or connected component in the image in isolation.
Naturally, the blob most likely to be the object sought is
that with the lowest energy.

4.4 Object tracker
Once an object has been detected, its shape and position
are known for a single frame. It is necessary to track the
object for every frame thereafter. To do this, the object
tracker makes use of a single level set function that evolves
itself to sit around the object in each frame. The level set
function is initialised in the image using the object detec-
tor and can come directly from the level set shape-filtering
stage of the object detector in the form of a single shape,
or the binary image at the output of the filtering stage in
the form of a set of shapes. Assuming that the level set
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contour surrounds the object correctly in the first frame
after detection, the tracker makes use of pixel information
that is within the contour. The initial contour and its inner
pixel information in the first frame are henceforth known
as the target contour and target model, respectively. For
every subsequent frame, the current level set contour
(which now probably will not lie around the object) and
the information about its inner pixels are known as the
candidate contour and candidate model, respectively. By
creating an energy functional that penalises deviations of
the candidate model from the target model, one is able
to force the candidate contour around objects appearing
similar to those surrounded by the target contour in the
original frame. Different energy functionals may be cre-
ated by comparing the target and candidate models in
various ways. The various functionals are discussed next.

4.4.1 Energy functionals for tracking
The following are energy functionals used for tracking:

• Histogram. The simplest feature that can be drawn
from the pixels is the histogram. Pixels are put into k
bins where hti is the number of pixels that falls into the
i th bin for the target t, andhci for the candidate c. The
energy is the sum of squared differences of the bins:

E =
k∑

i=1
(hti − hci )

2. (29)

• Fast Fourier transform. Frequency information may
be utilised to make the feature more invariant to
changes in lighting. Given a bounding box around the
contourM × N pixels in size, a modified Fast Fourier
transform is used to only extract frequency
information from pixels within the contour:

F�(x, y) =
M−1∑
m=0

N−1∑
n=0

�H(�(m, n))I(m, n)e−i2π( xmM + yn
N ).

(30)

The energy function is then defined as the difference
in target and candidate spectra:

E =
M−1∑
m=0

N−1∑
n=0

|F�c − F�t |. (31)

• Statistical descriptors. Statistical descriptors of the
target pixels can be calculated. This approach has
been used previously in maritime tracking work by
Voles and Teal in [20]. The following descriptors in
Table 1 have been modified to suit a level set case,
once again for a bounding box around the contour
M × N pixels in size:
After normalising with respect to a maximum value,
these descriptors can be thought of as vectors that

Table 1 Various statistical descriptors

Descriptor Formula

Energy d1 =
M∑

m=0

N∑
n=0

H(�(m, n)).I(m, n)2

Entropy d2 =
M∑

m=0

N∑
n=0

H(�(m, n)).I(m, n). log(I(m, n))

Homogeneity d3 =
M∑

m=0

N∑
n=0

H(�(m, n)).I(m, n)

1 + |m − n|

Contrast d4 =
M∑

m=0

N∑
n=0

H(�(m, n)).(m − n)2.I(m, n)

form a basis for a 4D space. The target contour’s pixel
distribution is then represented as a point within this
space Dt = [ dt1, d

t
2, d

t
3, d

t
4] and similarly so for a

candidate contour Dc = [ dc1, d
c
2, d

c
3, d

c
4]. The

Euclidean distance between these two points can
then be used as the energy functional:

E =
√√√√ 4∑

k=1
(dtk − dck)2). (32)

4.4.2 Normalisation for rotation/scale invariance
Apart from energy functionals for tracking, the second
pertinent issue in object tracking is consideration of
possible rotation or scale changes of the object being
tracked. Evolution using the above-mentioned function-
als may become erroneous for large differences in scale
and rotation between the candidate and target level set
functionals. To remove this error, the candidate contour
is normalised with respect to its rotation and scale with
respect to the target before evaluating the tracking energy.
Assuming an arbitrary scale parameter h and rotation
parameter θ that produces the candidate function �c,
both the current image frame I and the candidate function
�c are transformed according to:

�̃c(x, y) = �c(̃x, ỹ) (33)
Ĩ(x, y) = I (̃x, ỹ), (34)

where x̃ and ỹ are calculated as:⎡⎣ x̃
ỹ
1

⎤⎦=
⎡⎣ 1/h 0 0

0 1/h 0
0 0 1

⎤⎦ ⎡⎣ cos(−θ) − sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1

⎤⎦×
⎡⎣ x
y
1

⎤⎦ .

(35)

This transforms both the candidate function and the
pixels it contains to the same scale and rotation as the tar-
get function. The transformed function �̃c and image Ĩ
are then used in the evaluation of the energy functional.
It should be emphasised that the values of h and � do
not change and that the original candidate contour and
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image remain intact: their transformed values are used
exclusively for evaluating energy functionals.

5 Experimental results and discussion
The system was implemented in MATLAB and tested
using a set of ten maritime sequences obtained from the
Council of Science and Industrial Research (South Africa).
These sequences include a variety of scenes, weather con-
ditions and maritime objects of interest. A specific target
object was chosen for each of the sequences and used to
test both object detection and tracking—the target objects
for each of the sequences. This section introduces per-
formance metrics regarding object detection and tracking
and uses these metrics to compare the various choices for
detection and tracking described previously. Thereafter,
the final system is proposed.

5.1 Performance metrics
5.1.1 Object detection
The object detection algorithm is a form of classifica-
tion task, where pixels are either classified as belonging
to a maritime object or not. The detector’s output is a
binary image with pixels that are classified as objects
being labelled as 1. Given the actual classification of pixels
(ground truth) and the output of the system, four out-
comes are possible. Outcomes where the system agrees
with the actual data are labelled true positives (TP) or true
negatives (TN) depending on whether the pixel belongs
to an object or not. If the system incorrectly labels a pixel
as an object when in actuality there is not one there, this
is called a false positive (FP), while a false negative (FN)
is a case where an object is present but the system fails
to detect it. For the classification task, Precision is defined
as, given the actual classifications of particular subjects,
the proportion of cases where the subject was classified
as positive and was actually the case [37]. In terms of the
totals discussed above, Precision is calculated as:

Precision = TP
TP + FP

. (36)

Recall is defined as the proportion of subjects which
were actually positive and were classified as such [37]. In
terms of the above totals:

Recall = TP
TP + FN

. (37)

Hripcsak and Rothschild [37] define the F measure,
which is a harmonic mean of the two metrics:

Fβ = (1 + β2) × Recall × Precision
β2 × Precision + Recall

, (38)

where β is a parameter that allows one to weight Precision
or Recall more heavily. Fβ is the notation used to indi-
cate the β used in a particular F score. Szpak and Tapamo
[4] note that for a surveillance system, the reduction of

Table 2 Optimal background subtraction parameters for
various sequences

Sequence number Optimal n Optimal s Optimal Th

1 19 10 0.015

3 19 15 0.005

4 18 14 0.01

5 14 13 0.015

8 8 8 0.01

9 18 5 0.015

false negatives is top priority. For this reason, Recall was
weighted twice asmuch as Precision by setting β = 2. This
F score can be used to test both the output of the back-
ground subtraction algorithm and the post-filter. To test
the accuracy of level set filtering, the output of the post-
filtering stage was segmented using binary level set shape
prior segmentation for each sequence. For an input binary
image with n blobs and assuming that energy is positive at
all times, the segmentation proficiency score is defined as:

P = argmini�=t≤nE(i)
E(t)

, (39)

where E(x) is the final energy obtained from the level set
segmentation of blob x in the image and t is the index
of the blob belonging to the object that is to be found.
This essentially measures the contrast between the energy
associated with segmentation of the actual object and the
blob with the lowest energy of the remaining blobs. If the
desired object has the lowest energy, P will be greater than
1, indicating a correct classification. However, if another
blob has a lower energy than the desired object, P will be
less than 1.
If the object is successfully detected, the quality of its

segmentation is measured. Krishnaveni and Radha [38]
suggest using Dice’s coefficient [39] as a method of perfor-
mance evaluation for level set methods:

s = 2(A ∩ B)

A + B
, (40)

Table 3 Area of the smallest ground truth object in each
sequence

Sequence Object area

1 458

3 1047

4 696

5 677

8 70

9 1468
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Figure 4 Average Dice’s coefficient versus the number of
iterations for various energy terms.

where A and B are the ground truth and resultant seg-
mentation regions, respectively, and s varies from 0 to 1
depending on the proportion of pixels shared between the
ground truth and the segmenting contour.

5.1.2 Object tracking
The tracker detection rate (TDR) is the average number
of frames where an object is successfully tracked and is
defined by Porikli and Bashir [13] as:

TDR = TPF
TG

, (41)

where TPF is the number of frames where the system con-
tour overlaps the ground truth object. TG is the number of
frames in which the ground truth object is present. There
are different strategies to test if object overlap occurs, the
simplest of which is to test if the system contour’s cen-
troid lies within the ground truth object’s bounding box.

To measure the degree of success for a tracked object, the
object tracking error (OTE) [13] is defined as:

OTE = 1
TPF

TG∑
i=1

Dist(pGTi , pSysi ) × G(GTi, Sysi), (42)

where Dist() measures the distance between the centroids
for the ground truth object pGTi and system contour pSysi
in the ith frame, respectively. G(GT,Sys) is an overlap
function defined as:

G(GT,Sys) =
{
1 if GT and Sys overlap

0 otherwise.
(43)

5.2 Optimisation
There are a number of parameters that need to be decided
upon in the object detection and tracking subunits. Given
the performance metrics defined in the previous section,
the parameter values are deduced in an optimal way.

5.2.1 Object detection
While the common strategy of splitting a dataset into
two-thirds for training and one-third for testing is shown
to work well for reasonably sized datasets (over 100
cases [40]), this was used for the system dataset despite
its small size. The training could be repeated over a larger
data set as future work, and the concepts are emphasised
here with the term ‘optimal’ being used loosely. Sequences
1, 3, 4, 5, 8 and 9 were randomly chosen as a training
set for optimisation, while the remaining sequences were
used for testing.
Discussion of the two possible pre-filters, the 3×3Gaus-

sian filter and the 3 × 3 Median filter, is postponed until
last. No optimisation can be performed at the moment,
but later in this paper, performance of the two filters
is compared.

Figure 5 F2 scores for various pre-filtering algorithms.
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Figure 6 Comparison of various F2 scores for various filtering algorithms.

• Background subtraction. In order to achieve a more
satisfactory result, the background subtraction
algorithm must be optimised with respect to the
following:

– The number of frames used for kernel density
estimation (n)

– The spacing between each frame (s)
– The probability threshold used (Th)

These variables were adjusted to maximise the F2
score calculated for a small window around an object
of interest in an image. A brute force search was run
to find optimal parameters for each of the
above-mentioned training sequences. For every
sequence, the values of n, s and Th were varied and
the cost function was measured. Those that resulted
in the lowest cost function were considered optimal
for each sequence and are shown in Table 2.
The averages of these parameters were used in the
final algorithm hoping that these would give fairly
decent results across most of the sequences.

Therefore, the optimally chosen parameters are as
follows:

n = 16, s = 11 and Th = 0.0117

• Post-filtering. Out of the possible post-filters listed,
the fixed threshold connected component algorithm
has an optimal threshold based on blob size, while
the variable threshold algorithm has an optimal
threshold function that may be used. To find an
optimal fixed threshold for fixed threshold connected
component filtering, the area of the smallest ground
truth object in each sequence was measured in order.
The algorithm has to filter out blobs which are
superfluous but still keep those that belong to actual
maritime objects. To do this, a lower threshold for
blob size must be selected. Table 3 shows the area of
the smallest ground truth object in each sequence.
The smallest object, observed in sequence 8, has an
area of 70 pixels. To ensure that objects above this
size are kept, and allowing 10 pixels for safety, the
threshold was set at 60. The area of each of the

Figure 7 Output from background subtraction overlaid on the original image for sequence 7.



Frost and Tapamo EURASIP Journal on Image and Video Processing 2013, 2013:42 Page 13 of 16
http://jivp.eurasipjournals.com/content/2013/1/42

training objects was plotted versus its normalised
vertical position. The following area threshold
function that included each object was chosen:

M(y) = 90y + 10, (44)

where y is the normalised vertical position. This
function ensures that blobs near the top of the image
need only be over 10 pixels in size to be kept in the
image, while blobs at the bottom of the image need to
have an area over 100 pixels to be kept.

5.2.2 Object tracking
For each possible formulation of the energy functional,
the tracking algorithm was run on a hundred frames for
various iterations per frame. Three randomly selected
sequences were used as a source of these frames. The aver-
age Dice’s coefficient versus the number of iterations per
frame for each energy term is shown in Figure 4.

5.3 Object detection results
Given the deduced background subtraction and post-
filtering parameters, the performance of the object detec-
tion subsystems is not measured. The choice of pre-filter
is now addressed. The optimised object detection algo-
rithm was run on the test set of sequences: sequences 2, 6,
7 and 10. The entire system has been broken into its indi-
vidual subsystems which have been tested individually.
Subsystems that have a number of different algorithms
at their disposal have been tested using each of these
techniques and compared.

5.3.1 Background subtraction and pre-filter
Figure 5 shows F2 scores for various pre-filtering algo-
rithms that have been tested. The comparatively low
scores for sequences 2 and 6 can be explained by the large
amount of glint in sequence 2 and the small object size
in sequence 6. Despite these low scores, pre-filtering was
able to improve scores for every sequence. It is clear that
using the 3 × 3 Gaussian filter provides the best results,
and so this was used for testing in the next stages of the
algorithm.

5.3.2 Post-filtering
Figure 6 shows the F2 scores of various post-filtering
methods. These have been applied to the output of the

Table 4 P scores for various image sequences using
Chan-Vese energy as classification criteria

Sequence P score Classification (pass/fail)

2 6.9316 Pass

6 0.4642 Fail

7 4.2569 Pass

10 13.1468 Pass

Table 5 Segmentation results from image sequences that
passed level set filtering

Sequence Dice’s coefficient

2 0.8698

7 0.6113

20 0.6667

background subtraction used with a Gaussian pre-filter,
and so F2 scores for the raw background subtracted out-
put have been included for comparison. Every filtering
method was able to improve the score for every sequence.
F2 scores for sequences with large objects are less sensitive
to false positives as they do not compare much propor-
tionally to the number of pixels in the object. The converse
is true for smaller objects such as sequence 6 where the
largest improvement from filtering is shown.
As they are the most aggressive filtering methods, it

comes as no surprise that the connected component fil-
ters (both fixed and variable threshold) give the biggest
improvement in scores. One should bear in mind the
possibility that if a target were too small, these filtering
algorithms would remove it from the image, and so there
is an associated risk with using them. Due to its increasing
threshold at the bottom of the image, the variable thresh-
old connected component algorithm was able to remove
more false positives than the fixed threshold, producing
the highest F scores out of all the filters. This algorithm
yielded an average increase of 78% in F2 scores for all

Figure 8 Segmentation result of sequence 10 using level set
filtering. The green contour represents the ground truth object,
while the red represents the segmenting contour. Smudging effects
from background subtraction degrade segmentation results.
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Table 6 Performancemetrics for each sequence

Sequence TDR OTE

1 1 1.8795

2 1 3.7144

3 1 1.4506

4 0.85 10.799

5 0.71 4.8505

6 0.38 7.2204

7 1 20.62

8 1 2.7759

9 0.7933 1.5088

10 1 2.6944

The sequences have been calculated using sequences of 300 frames.

test sequences. The inability of post-filtering algorithms
to improve test scores in sequence 2 can be attributed
to the large amount of glint and ocean movement in the
image. Figure 7 shows the output of post-filtering, where
the majority of false positives at the bottom of the image
are removed.

5.3.3 Level set filtering
To test the level set segmentation technique, the output
from the variable threshold connected component algo-
rithm was used as input data as it had the best results out
of all the filtering methods. Table 4 shows P scores for
each sequence and indicates which passed or failed at clas-
sification. Apart from sequence 6, all the sequences were
correctly classified with very good P scores. A likely rea-
son for sequence 6’s failure is the similarity in the shape
of the blob around the ship with false positive blobs in the
image. Despite its poor F2 score, the algorithm was able
to locate the object in sequence 2. Table 5 shows actual
segmentation results for the sequences that were correctly
classified.
While sequence 2 can be considered as a good seg-

mentation, smudging effects from the background sub-
traction algorithm caused poor segmentation results for
sequences 7 and 10. These smudging effects trailing the
objects are simply artefacts of the threshold selection for

the sequences. As the ship in sequence 10 (Figure 8), for
example, moves from right to left, its pixel values become
part of the density estimate for pixels trailing it. This
decreases the probability of seeing a sea pixel, and so when
one is seen, this may be marked as the foreground if the
threshold is not set low enough. The segmenting con-
tours have tried to position themselves to include as many
of these pixels as possible resulting in offsets from the
ground truth.

5.4 Object tracking results
Table 6 shows TDR and OTE for each sequence. The main
reason for poor performance in sequences (especially 4
and 5) can be attributed to change in frequency charac-
teristics of the pixels that make up target objects. Figure 9
shows an example of this from sequence 5. The target con-
tour in the first frame (above, in yellow) and the tracking
contour in the frame where it starts to drift away from
the object (bottom, in red) are shown. In this case, glint
from the sun strongly defines the borders of the object in
the target frame, while the contour starts to drift when
this glint is no longer present, making the target almost
indistinguishable from the background to the human eye.
Poor tracking results in sequence 6 can be attributed to

small object size and similar frequency characteristics of
the object with the ocean, whereas camera panning ruined
the otherwise perfect tracking results in sequence 9.
Although the tracking contour successfully overlapped the
object in every frame of sequence 7, the sequence has a
comparatively high object tracking error of 20.62. This is
due to a local minimum in the tracking energy functional
under the object that left the tracking contour offset from
its target in most frames.

5.5 Speed of algorithm
On a 2.0-GHz dual-core processor, our system could
process approximately ten frames per second with a
MATLAB implementation of the algorithms. This per-
formance can be greatly improved by doing a C++
implementation and parallelising some of the algorithms
(e.g. background subtraction). The running time of the
video tracker developed has purposefully been given

Figure 9 Change in frequency characteristics of the pixels that make up target objects. Comparison of target contour from sequence 5 (a)
and the frame in which the contour started to drift from the object (b).
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lesser priority in order to focus on the development of
concepts and methodology. Since this work addresses
unexplored topics, the main focus is on the development
of models and algorithms to address fundamental issues
rather than address supplementary practical issues such as
algorithm speed which may be optimised in future work
for real-time computing.

6 Conclusions
This paper has investigated the use of prior knowledge
of a ship shape to assist level set segmentation in video
tracking for amaritime surveillance problem. It shows that
integrating shape priors into level set segmentation is fea-
sible and results in promising video tracking performance.
While the system did produce an acceptable set of results,
it still requires some assumptions that would not be prac-
tical in a real-life situation. Future work would allow for
relaxation of these assumptions. The system only uses a
single shape prior that must be manually preset for every
sequence that would not be feasible in a real-life system.
To remove the reliance on the user, a bank of multiple
training shapes could be modelled using a method such as
kernel density estimation. This model would then be used
in place of a fixed shape prior for segmentation. It has to
be noted that the system would be far more accurate if
trained with a larger training set.
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