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A framework for measuring sharpness in natural
images captured by digital cameras based on
reference image and local areas
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Abstract

Image quality is a vital criterion that guides the technical development of digital cameras. Traditionally, the image
quality of digital cameras has been measured using test-targets and/or subjective tests. Subjective tests should be
performed using natural images. It is difficult to establish the relationship between the results of artificial test
targets and subjective data, however, because of the different test image types. We propose a framework for
objective image quality metrics applied to natural images captured by digital cameras. The framework uses
reference images captured by a high-quality reference camera to find image areas with appropriate structural
energy for the quality attribute. In this study, the framework was set to measure sharpness. Based on the results,
the mean performance for predicting subjective sharpness was clearly higher than that of the state-of-the-art
algorithm and test-target sharpness metrics.

Keywords: image quality, reduced-reference metric, no-reference metric, test-target metric, camera phone, bench-
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1. Introduction
Image quality can be measured using objective or subjec-
tive methods. Different imaging applications require dif-
ferent methods and metrics. Objective methods for
characterizing the performance of digital cameras can be
based on test-targets or algorithms. For a test-target
metric, a target with known physical properties is cap-
tured, and the reproduction is measured. Test-target
measurements are tedious and require a controlled
laboratory environment. Compared to a real scene, test-
target views are easy to interpret and process as desired.
Subjective tests, however, cannot utilize captured test-
target images. Subjective tests for consumer cameras
should be performed using natural-scene views captured
under typical photographic conditions. Only natural
scenes can show the naturalness and usefulness of images
captured by a camera.
Algorithmic methods can facilitate natural-scene pic-

ture assessment, and the same image files can be used for

both subjective and objective measurements. The algo-
rithmic methods can be classified into no-reference (NR),
reduced-reference (RR), and full-reference (FR) methods.
This classification is related to reference images’ avail-
ability and use. An NR metric does not need a reference
image, an RR metric needs some information about a
reference, and an FR metric needs a pixel-wise reference
image. “Pixel-wise” means that the corresponding pixels
in two images are found at the same pixel coordinate
locations. This is not the case when characterizing cam-
eras, e.g., for benchmarking purposes.
Objective image-quality research aims to develop meth-

ods that predict the subjective quality experience. The FR
methods are fairly close to achieving this goal [1]. There
are different approaches to the FR methods. One is based
on modeling the human visual system [2], and another is
based on the structural similarity (SSIM) between images
[3]. In addition, natural image statistic (NSS) metrics are
promising [4]. The SSIM metric is simple and has many
variations [5-8]. Recently, eye-tracking and salience algo-
rithms have been integrated into FR methods [9-12].
These algorithms weight the attractive areas of an image
when the spatial values of the quality metrics are pooled
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into a single quality number. Learning-based models are
another new direction. Examples include Moorthy and
Bovik’s [13] learned-support vector machine, Eerola’s [14]
learned-Bayesian network, and Cui and Allen’s [15]
learned neural networks for estimating image quality.
An FR metric is often general. Its output is a single

number (e.g., a mean of a spatial distortion map) that pro-
vides an overall quality estimation. If the image-quality
space is multi-dimensional, as with digital cameras, a sin-
gle number or distortion map does not explain the quality
[16]. Image-quality evaluation can be seen as a hierarchical
model. The model includes higher- and lower-level attri-
butes. The higher-level attributes are more subjective.
Personal preferences affect their values more than those of
the lower-level attributes. For example, naturalness and
clarity are higher-level attributes for a consumer digital
camera. Graininess, brightness, sharpness, and contrast are
lower-level attributes. The lower-level attributes connect
to the higher-level attributes. Leisti et al. [17] claimed that
brightness, sharpness, and higher contrast make an image
seem clear, and graininess and color brightness affect nat-
uralness. By contrast, faded colors are associated with a
lack of clarity.
Higher-level attributes could be predicted using models

composed of lower-level attributes. Before such models
can be composed and tested, we need robust metrics for
the lower-level attributes. There are two reasons why
robust metrics are unavailable for digital cameras. The
first is that the quality space of digital cameras is multi-
dimensional and complex. Digital camera pictures have
many different and interacting distortion sources. Signal
sharpening, noise removal, and color correction opera-
tions also affect the perceived image quality. The second
reason is that there is no pixel-wise reference image, due
to geometrical differences between images captured by
different cameras; therefore, mature FR methods cannot
be applied to digital cameras. NR methods do not need
reference images, but they are content-dependent, devel-
oped for specific distortion types and interact with other
distortions.
The method proposed in this study is a compromise

between the FR and NR methods. It can be classified into
the group of RR methods. The method uses a reference
camera, and its application area is camera benchmarking.
Camera benchmarking aims to rate the quality of consu-
mer camera systems and determine the reasons behind
the differences. The RR method proposed is partly analo-
gous to the test-target and NR methods. The analogy to
the test-target methods relates to known patches. Varia-
tion in a patch describes the test-target, and variation in a
particular area describes the attribute value for the pro-
posed metric. The analogy to the NR methods relates to
local area searching. An NR noise metric tries to find
smooth areas, and an NR sharpness metric tries to find

edges from distorted images. The proposed method is
more precise than the NR methods because the areas are
located in a high-quality reference image. Compared to
the test-target methods, the proposed method reduces the
work load in camera benchmarking study because a con-
trolled environment is unnecessary. The potential for find-
ing connections between subjective and objective data is
better when the same image can be used for both
measurements.
The novelty of the proposed method arises from using a

reference image and local areas to compute the image-
quality attributes of the natural pictures captured by the
cameras to be benchmarked. The contribution of the
method lies in utilizing scene features to measure digital
camera quality attributes. This is accomplished by identify-
ing local areas from a given scene digitized by capturing
with reference camera. A high-quality reference camera
plays a key role. The corresponding areas for the images
captured by the cameras to be benchmarked are located
using area descriptors. The difference from the earlier RR
metrics [18,19] is using local regions for the attribute
measurements.
The rest of the article is organized as follows. Section 1

introduces the study. Section 2 reviews the test-target, NR,
and RR methods. Section 3 defines the proposed method
in detail. Section 4 describes the test setup, and Section 5
shows and analyzes the results. Section 6 concludes the
study.

2. Earlier studies
2.1. Test-target metrics
Digital camera quality attributes have widely been mea-
sured using test-targets [20-23]. The ISO 12233 standard
[20] describes the method for sharpness and resolution
measurements. This method is based on the frequency
response of a slanted edge. MTF50 is the spatial frequency
at which MTF = 50% (i.e., at which contrast has fallen to
half its value at low spatial frequencies). Koren [24] has
argued that the MTF50 value of the frequency response
correlates well with the perceived sharpness. In Section 5,
we use the MTF50 value as a reference value to assess the
performance of the proposed metric.
The test-target methods are good tools for camera char-

acterization. Signal sharpening strength can be estimated
by the peak of the spatial frequency response [25,26].
Recent research has focused on estimating the influence of
the combination of signal sharpening and noise removal.
The difficulty is that noise removal can filter the image
structure while signal sharpening sharpens the edges.
Based on the kurtosis [27] or dead leaf metrics [28], the
sharpening and noise removal combination can be esti-
mated for test patches. However, a test-target metric does
not describe the reproduction of specific real scenes.
System performance under the conditions in which a
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typical consumer takes photographs is more interesting for
camera benchmarking purposes. Illuminance, color tem-
perature, and scene complexity differ between laboratory
and real-scene environments, and cameras use different
signal processing parameters for different lighting condi-
tions. Compared to a real-scene, the patterns or colors of
test-targets are easy to interpret and process in the camera
pipeline as desired.

2.2. NR metrics
The NR methods are applicable for digital cameras.
They can be divided into local and global metrics. Local
metrics select specific areas from an image, and global
metrics use all the image’s pixel values in the calcula-
tions. Furthermore, the methods can be based on gradi-
ents, kurtosis, or singular values, wavelet-decomposition
or edge-widths. An NR metric often combines these
metrics and transformations.
Edge-width metrics are local. They expect that natural

images include sharp edges. In Section 5, we use the
Marziliano et al. [29], Ferzli and Karam [30], and Narve-
kar and Karam [31] NR metrics as benchmarks for the
proposed metric. The metrics are based on edge-width
analyses. Marziliano et al. [29] calculated the sharpness
value using the edge-intensity profiles after Sobel filter-
ing. Ferzli and Karam [30] described the just-noticeable
blur (JNB) concept. Their sharpness metric compares the
edge width and contrast-dependent JNB values. If the
edge width is higher than the JNB value, the probability
that the image is not sharp increases. Narvekar and
Karam [31] utilize JNB with a cumulative probability of
blur detection (CPBD). The CPBD algorithm calculates
the percentage of edges at which blur cannot be detected.
Liang et al. [32] have also proposed NR metrics based on
edge widths. Liang et al. computed the histogram of ver-
tical and horizontal gradient profiles. The shape of the
histogram described the sharpness of the image. Caviedes
and Gurbuz [33] calculated sharpness values using the
kurtosis of DCT values from an edge neighborhood.
Global metrics are calculated from given statistical

properties of an image. A global metric often uses image
gradient values. Singular values and wavelet decomposi-
tion have also been used. Zhu and Milanfar [34] mea-
sured sharpness using the singular values of a gradient
image. Chen and Bovik [35] calculated sharpness using
the distributions of the gradient and wavelet-decomposi-
tion values. Wee and Paramesram [36] estimated sharp-
ness using the highest eigenvalues of a normalized image.
They expected that the dominating eigenvalues would
relate to sharpness and the less dominate eigenvalues to
noise. Sheikh et al. [37] described how the NSS model
provides reference for the metric. They expected that dis-
tortions in the nonlinear dependences of the NSS would
be due to image distortions.

2.3. RR metrics
The RR methods suggested so far cannot be directly
applied to digital camera characterizations. An RR
metric needs information about a reference image. The
reference-image framework proposed here makes it pos-
sible to use RR methods for digital cameras. We used
Wang and Simoncelli’s RR metric [18] as a benchmark
for the proposed metric in Section 5.
The RR metric [18] computes RR features in the

wavelet domain. The image is decomposed into three
scales and four orientations using the steerable pyramid
technology. The wavelet coefficients from the reference
image subbands are fitted using the generalized Gaus-
sian density model:

pGGD(x;α,β) =
(

β

2α�(1/β)
e(|x|/α)

β

)
(1)

where Γ(a) is the Gamma function, a describes scale,
b describes the shape of the distribution, and x is a coef-
ficient. Parameters a and b from 12 different sub-bands
are the features of the reference image. The coefficient
histograms of the distorted images can easily be com-
puted from the distorted images. The Kullback-Leibler
distance (KLD) between the probability distribution of
the wavelet coefficients of the reference and distorted
images is used as a distortion measure. Equation (2) cal-
culates the overall distortion:

D = log
(
1 +

(
1
D0

)∑∣∣∣d̂k(pk||qk)∣∣∣
)

(2)

where k is the number of sub-bands, pk and qk are the
probability functions of the kth sub-band in the refer-
ence and distorted images, respectively, d̂k is the esti-
mate of the KLD between pk and qk and D0 is a
constant used to control the scale of the metric.
Other RR metrics also operate in the wavelet domain.

Li and Wang [19] computed RR features using a divisive
normalization method for the local normalization of
wavelet coefficients. Zhang et al. [38] calculated a differ-
ence vector between the reference and distorted images
using the singular values of wavelet decomposition. Xue
and Mou [39] used the Weibull distribution of the
wavelet decomposition, whereas Cheng and Cheng [40]
used the Laplace distribution of the gradient image. A
literature review of RR metrics can be found in [41].

3. Reference-image framework
3.1. Framework components
The reference-image framework proposed here allows
applying RR methods to digital cameras. The reference-
image framework contains the four components shown
in Figure 1. The three components, which are inside the
dashed box, analyze images and select the measuring
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regions for the “Quality metric” component. This com-
ponent includes the algorithm for computing the quality
attribute in question. In this study, the quality attribute
was sharpness. Section 3.5 describes the sharpness
metric in detail. By changing the quality metric compo-
nent algorithm, it is possible to use the reference-image
framework for attributes other than sharpness.
The inputs to the framework are the reference image Ir

and the images captured with different cameras, called
test images It. Before the analysis, the reference and test
images are scaled to the same resolution. The “Scene
analysis” component characterizes the scene using the
reference image and selects candidate blocks for mea-
surement. The output of the “Scene analysis” component
is the vector of candidate points, CP, which includes the
pixel coordinates of the so-called candidate blocks. The
“Correspondence areas” component locates the blocks in
the test images that correspond to the candidate blocks.
This location is based on the correspondence features Fr
and Ft between the reference and test images. The corre-
spondence features are searched using the well-known
SIFT algorithm (scale invariant feature transform). The
SIFT algorithm is implemented in the “Correspondence
features” component. The correspondence blocks (Bi, i =
1,2,...,m) are cropped from the test images and fed to the
“Quality metric” component. Finally, the “Quality metric”
component applies the attribute metric to the correspon-
dence blocks.
The objective function, f(), is a feedback control of the

“Quality metric” component. The objective function is
used both for candidate block searching and the quality
metric. In this study, the objective function was the stan-
dard deviation of the wavelet coefficients. The dual task
of the objective function is to locate the high-energy
areas from the reference image and measure the corre-
sponding areas’ energy from the test images. The pro-
posed reference-image framework is modular, and other
quality attributes can be calculated by changing the
objective function. The next subsections describe the
components’ functions in more detail.

3.2. Scene analysis
The “Scene analysis” component computes local values
for the candidate blocks from the reference image using
the function f(). It aims to find image areas with appro-
priate structural energy for the quality attribute. The
structural energy of the selected areas should change if
a change in the quality attribute is perceivable. Smooth
regions cannot be used for sharpness measurements
because their energy levels can remain unaltered after
some low-pass operations.
Figure 2a shows the initial points, IP, for finding local

areas. The measurement blocks (M × M pixels) have
been arranged in a predetermined symmetric order. The
block-size parameter M is set to 100 pixels when the
image size is 1600 × 1200 pixels. The initial symmetric
order of the blocks in an image emphasizes the center
area. The emphasis is based on the assumption that the
important image objects and features often lie close to
the center area. The framework samples the center area
using more blocks than in the edge areas if the struc-
tural energy of the center area is appropriate for the
quality attribute in question. In Figure 2b, for example,
the center area includes more candidate blocks than the
edge area because of the high-energy trees in the center.
The sharpness metric can use these high-energy trees.
A block becomes a candidate block if it maximizes the

objective function in a limited neighborhood. The neigh-
borhood size is determined by a tolerance value, T. Fig-
ure 2b shows the candidate blocks when T is 120 pixels
and the image size is 1600 × 1200 pixels. Equation (3)
shows the maximizing function used:

(CPy, CPx) = argmax
CPy ,CPx

⎛
⎝ 1
M2

j<CPy+M/2∑
CPy−M/2<j

k<CPx+M/2∑
CPx−M/2<k

x2j,k

⎞
⎠ (3)

CPy and CPx are the center coordinates of the block,
and M is the block size. Equation (3) maximizes the
standard deviation of the first-scale diagonal wavelet
coefficients, x, within the block when d(IP, CP) <T. The

Figure 1 The reference-image framework for the image-quality attribute calculations.
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function d() computes a distance between the IP and
CP. The IP are the center coordinates for the predeter-
mined blocks. The CP are the center coordinates for the
candidate blocks.
Figure 2b shows how the candidate block locations

depend on the scene structure. Because Equation (3) maxi-
mizes the first-scale wavelet energy, many candidate
blocks include high-frequency structural objects, such as
the trees in the image center. In this scene, the candidate
blocks do not sample the strong edges between the roof
and sky, as the higher-energy regions (trees) can be found
in the neighborhood. The most important parameter of
the method is the tolerance, T, which limits the size of the
search window. Without tolerance, all measuring blocks
would migrate to the highest-energy area of the scene.
With tolerance, the sampling is more extensive, and the
metric acquires more sampling points.

3.3. Correspondence features
The output of the “Scene analysis” component contains
candidate blocks. To measure the quality-attribute values
for the test images, the blocks corresponding to the candi-
date blocks in the reference images must be found in the
test images. Locating the corresponding areas from the
camera images is not a straightforward process, though
the views of the reference and test images are the same.
With the camera images, differences exist in features,
including rotation, scaling, perspective, and brightness.
Noise levels and types also differ. Figure 3 shows an exam-
ple where images have been captured with different cam-
eras so they are as similar as possible and the image
regions have been cropped using the same pixel coordi-
nates. It is obvious that correspondence block searching
using only pixel-coordinate values does not work. A search
using the block-correlation method also fails because of
noise.
The proposed framework utilizes the SIFT method [42]

for correspondence-block searching. The “Correspondence
features” component computes feature vectors for the test

and reference images (Fr, Ft). The “Correspondence areas”
component locates correspondence blocks with the aid of
the correspondence features. The SIFT algorithm was
selected for the framework because SIFT-based methods
are invariant to scaling, translation, and rotation, and they
are partially invariant to brightness changes and perspec-
tive [42]. In addition, the features are fairly robust to noise.
The SIFT algorithm used [43] makes a scale-space

transformation and calculates the difference of Gaussian
(DoG) for the images at different scales. Local extremes
are calculated by comparing the DoG sampling points to
eight neighboring points in the same scale and nine
neighboring points in higher and lower scales. The DoG
point is a key point if its value is the highest or lowest in
the neighborhood. Other points are excluded. Next, key
points with low contrast or along an edge are excluded.
Orientation histograms with 36 bins are calculated for
the remaining key points. The orientation histogram is
based on gradient orientations calculated from the sur-
roundings of a key point after Gaussian filtering. The
highest peak of the orientation histogram describes the
key point orientation. If the histogram includes peaks
with heights that are at least 80% of the highest peak,
they are marked as the new key points for that direction.
Finally, the key-point descriptors are defined. A key-
point descriptor includes the orientation histograms
from the neighborhood of the key point. In our imple-
mentation, the descriptors have four orientation histo-
grams with eight bins that describe the cell values for the
feature vectors.

3.4. Correspondence areas
The SIFT algorithm was applied, and the 20 nearest cor-
respondence features of the candidate block center in
the reference image were used for the correspondence-
block searching in the test images. The block centers in
the test images were located by calculating the angle
and length of the vectors from the feature points to the
candidate block centers in the reference image.

Figure 2 Initial and candidate blocks in a reference image. (a) The reference image with the blocks in a predetermined symmetric order. (b)
The reference image with blocks when the sharpness function for the blocks is maximized.
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Figure 4 shows an example where eight correspon-
dence features are used for the correspondence-block
searching in the test image. Figure 4a shows the candi-
date block center and vectors from the correspondence
features. Figure 4b shows the estimated block center for
the test image. The estimate is based on the average of
the vector end-points from the correspondence features.

3.5. Sharpness metric
The sharpness metric used in the reference-image fra-
mework of this study is based on local energy. Local
energy values are calculated as the standard deviation of
the wavelet coefficients from the correspondence blocks
located in the test image. The wavelet decomposition
was performed using the MATLAB Wavelet toolbox.
Based on pretest results, we elected to use only the first-
scale diagonal coefficient values captured by the cameras
selected for this study. We also elected to use Haar
wavelets. In the pretest, vertical, horizontal, and diagonal
sub-bands for the three scales were calculated. We
tested single and different sub-band combinations using
the same cameras and test images as in this study. The
first-scale diagonal band proved to be the most robust.
The objective sharpness metric for any correspondence
block Bi was computed from Equation (4):

Si =
1

(M− b)2

j<(M−b/2)∑
j>b/2

k<(M−b/2)∑
k>b/2

x2j,k (4)

where the (j, k) are the pixel coordinates in a corre-
spondence block Bi, M is the size of the correspondence
block Bi, b is a parameter for the reduced measurement
area, and xj, k is the diagonal wavelet coefficient. The
sharpness metric uses m correspondence blocks linked
to the m highest-valued candidate blocks. The overall
sharpness value is the average value of m correspon-
dence blocks. In this study, m was set between 1 and 24
when studying how the value of m affects performance.
The SIFT algorithm is robust and finds correspon-

dence blocks well, but the correspondence block edge
areas can include structures from outside the original
candidate-block area. The sharpness metric compensates
for this inaccuracy with a reduced measurement area. If
the candidate-block size used for block searching is M
pixels, the measurement area within the correspondence
block in the distorted images is M - b pixels. In this
study, the value of M was set to 50, 75, 100, and 125
pixels when studying how the value of M affects perfor-
mance. The value range of the M was based on the pret-
est. The parameter value of b was set to 25 pixels.

4. Experimental settings for data collection
4.1. The image contents
The proposed method was validated using two datasets
(Datasets I and II). Both datasets included five views
(image contents). View contents were designed based on
the photo space approach [44,45]. The photo space
describes typical shooting distances and illuminance

Figure 3 Correspondence block searching using only the pixel-coordinate values is inaccurate.

Figure 4 The centers of the correspondence blocks are approximated from the correspondence feature points. (a) The reference and
(b) test images have been cropped using the same pixel coordinate values. The lines denote vectors whose lengths and directions are
calculated from the reference image. The points denote correspondence-feature points. The crosses denote correspondence-area centers.
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levels for specific imaging-application areas. Our appli-
cation was camera-phone benchmarking. By using two
different datasets that were collected at different time
periods, we were able to validate the robustness of the
objective method.
The cameras for the tests were selected to cover a wide

quality range: the selection consisted of low-, moderate-,
and high-quality mobile phone cameras and moderate-
quality compact cameras. The cameras’ pixel counts
ranged from 3 to 12 Mpix. The views of Dataset I were
captured by 13 cameras, and those of Dataset 14 cameras.
In addition, all views were captured by a high-quality
reference camera. The reference camera was a Canon EOS
5D with a Canon EF 24-80 mm lens. The performance
(e.g., signal-to-noise ratio and detail reproduction) of the
reference camera was considerably higher than that of the
cameras to be tested, which was the only requirement.
Every view was captured several times by each camera.

The cameras were set to their automatic mode, as the
study benchmarked consumer products. The automatic
mode is typically used by consumer photographers. Based
on an expert evaluation, one image was selected to repre-
sent each camera using the focus on the content target as
the criterion. Images with a random white balance or
exposure error were discarded.
Figure 5 shows the image contents. The contents of

Dataset I are shown on the upper row and those of Data-
set II on the bottom row. Contents 1 and 2 simulate a
living room environment. Content 4 simulates a tourist
image, and Content 5 a landscape image. Contents 1, 2, 4,
and 5 are views that mobile phone users can be expected
to capture with their cameras. Content 3 is a studio image
that device manufacturers use for signal-processing adjust-
ments or other measurements. The illuminances of Con-
tents 1, 2, and 3 were 100, 10, and 1000 lux, respectively.
The most notable differences between Datasets I and

II can be found in Contents 4 and 5. They were cap-
tured outdoors in Finland, but in different seasons and

from different shooting positions. Dataset I was cap-
tured in autumn and Dataset II in winter. The differ-
ences in Contents 1 and 2 relate only to the people in
the images and their clothes. Content 3 is identical for
the two sets.

4.2. Subjective test settings
Because of the display size in the subjective tests, images
were scaled to a size of 1600 × 1200 pixels. The interpo-
lation method was bicubic. Black borders were also
added around the images to match the image file and
display resolutions (1920 × 1200). The test setup
included two Eizo ColorEdge CG241W displays and a
small display. The test images were shown on one dis-
play one at a time, and the reference image (Dataset I)
or several reference images (Dataset II) were shown on
the other. The user interface included sliders for quality
attributes and was mounted on the small display.
The observers first evaluated the overall quality value

of a test image and selected the attribute values, one of
which was sharpness. The other attributes were light-
ness, saturation, and graininess. The continuous scale
was from 0 to 100. All test images representing one
content were shown sequentially. The order of the
images and contents were randomized between the
observers. Near visual acuity, near contrast vision (near
F.A.C.T), and color vision were controlled before partici-
pation. The viewing distance was approximately 80 cm,
and the ambient illuminance was 20 lux. The displays
were calibrated using the sRGB standard. We utilized
the subjective sharpness data for this article. The follow-
ing subsections describe the datasets’ properties in more
detail.
4.2.1. Dataset I
Dataset I included 65 test images (13 cameras × 5 con-
tents). University students were used as observers (n =
25). They were all naïve with respect to image quality.
Before the test, all test images and high- and low-quality

Figure 5 The proposed image-quality framework was validated using five image contents and two subjective datasets.
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example images were shown to subjects at a rate of one
second per picture. The reference image was shown on
one display during the test, and the test images on the
other display. The image-quality value of the reference
image was set to 90 on a scale of 0-100. The reference
image functioned as a high-quality anchor image. A
quality value of 90 out of 100 left some latitude for the
observers with high-quality test images. Reference
images were tuned based on consumer preference
expectations. Typical consumers prefer sharp, high con-
trast, and colorful images.
4.2.2. Dataset II
Dataset II included 70 test images (14 cameras × 5 con-
tents). University students were used as the observers (n
= 30). They were all naïve with respect to image quality.
Before a single test image of a given content was shown,
all test images of the content in question were shown to
the observer as a slide show. This process was repeated
before each test image was evaluated. We call this
method a dynamic reference method. Before the test
started, high- and low-quality example images were also
shown to the observers. The main difference between
Datasets I and II is that the observers saw all images of
a given content before a single test image of Dataset II
was assessed. Small differences between images were
easier to find with this type of presentation. The differ-
ences between the Datasets were motivated by the con-
tinuous need to improve the procedures for subjective
image quality testing.

4.3. Subjective sharpness data
Figure 6 shows the content specific subjective sharpness
values for Datasets I and II, sorted in ascending order.
The 95% confidence intervals (vertical lines) and a
sharpness value of 50 (horizontal lines) on a scale from
0 to 100 are added to the figures to aid comparisons.
Based on Figure 6, there are clear differences in the
scales of Datasets I and II. The scales of Dataset II are
spread wider than those of Dataset I. This difference is

attributable to the data collection methods. Dataset II
used the dynamic reference method. The observer saw
all images representing one content before a single test
image was evaluated. With Dataset II, the observer’s
quality reference scale was thus based on the image set
of the content under study. With Dataset I, the refer-
ence was based more on the observer’s internal refer-
ence because the reference images were not shown
during the test. An internal reference is known to be
dependent on the observer’s individual experiences and
memory.
Because the view and shooting environments were the

same for both sets, Content 3 (the studio image) gives a
good example of how the test method affected the data.
The studio image is easy for cameras, as signal proces-
sing in modern cameras can handle simple views. This
consideration can be seen in the results achieved in
Dataset I. The observers had difficulty seeing differences
between the images. For Dataset II, the observers saw
larger differences between the images. This distinction
was due to the dynamic reference, which provided
observers with a clear reference for the sharpness scale
within the image set under consideration. Based on
these results, the dynamic reference method functions
well if differences are small but exist.
The problem with the dynamic reference method

relates to content-specific normalization. Observers use
content-specific anchors when quality values are given.
The worst image from the content set functions as a
low-quality anchor (quality value = 0), and the best
image functions as a high-quality anchor (quality value
= 100). We can expect that the same sharpness values
for images of different contents would not be identical
within Dataset II because some contents are more diffi-
cult for cameras to detect than others. For example, the
sharpness value of 50 for Content 3 is not the same as
the sharpness value of 50 for the other contents. This
effect should be considered when data are used for
metric validation. Before Dataset II can be used, the

Figure 6 Subjective sharpness values for Datasets I and II. The subjective sharpness values on the vertical axis (scale, 0-100), with 95%
confidence intervals are sorted in ascending order (on the horizontal axis), for Datasets I (with 13 cameras) and II (with 14 cameras).

Nuutinen et al. EURASIP Journal on Image and Video Processing 2012, 2012:8
http://jivp.eurasipjournals.com/content/2012/1/8

Page 8 of 15



objective metric should be normalized in a content-spe-
cific manner.

4.4. Reference images
We used two different reference image types: one for
the subjective test (Dataset I) and one for the reference-
image framework for the objective image-quality metric.
The difference between the reference image types arose
from the image-processing aims. For the objective
image-quality metric, image processing was minimized.
Only the default algorithms of white balance, demosai-
cing, and JPEG format compression were applied. The
purpose was to characterize the views of Figure 5.
For the subjective test, the aim was to produce a pre-

ferable image. In addition to the default algorithms,
image sharpness, contrast, and colorfulness were
adjusted according to known consumer preferences.
These are assumed to favor sharp, high-contrast, and
colorful images.
Figure 7 shows five candidate blocks for the reference

images of Dataset I. The candidate blocks shown had
the five highest sharpness values (m = 5), as calculated
by Equation (3). The block size, M, is 100 pixels, and
the image size is 1600 × 1200 pixels.

4.5. Other metrics
We compared the proposed method to the state-of-the-
art NR, RR, and test-target metrics. Section 5.2 presents
the results. The FR metrics were omitted from the per-
formance analyses reported in Section 5.2; they would

not give meaningful results without additional pre-pro-
cessing, as they require pixel-accurate alignment.
The NR sharpness metrics were from Marziliano et al.

[29], Ferzli and Karam [30], and Narvekar and Karam
[31], and the RR metric was from Wang and Simoncelli
[18]. The NR metrics are local, and previous studies
have reported their performance to be high [30,31]. The
RR metric performance [18] was high in our pretest uti-
lizing the test images captured by the different cameras
in this study. We used the published code [46] for the
Ferzli and Karam NR metric [30], the published code
[47] for the Narveker and Karam NR metric [31], and
the published code [48] for the Wang and Simoncelli
RR metric [18]. We used Marziliano et al.’s [29] for the
MATLAB implementation of their NR metric.
The RR metric [18] has been developed for overall

image quality. The metric compares the wavelet coeffi-
cient distributions between the reference and distorted
images. Equation (2) calculates the overall image quality.
Its high performance at predicting sharpness in our
pretests relates to the correlation between image con-
trast and wavelet coefficient energy. Image contrast
relates to the perceived sharpness and detail
reproduction.
In addition to the above algorithmic metrics, MTF50

values were calculated. The Mica test-target [49] images
were captured under laboratory conditions. Low-illumi-
nance lighting (100 lux) was used to simulate the condi-
tions of Contents 1 and 2, and high-illuminance lighting
(1000 lux) was used for the other contents. The Mica

Figure 7 The five blocks with the highest sharpness are shown on reference images for Dataset I.
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target included low-contrast edges for the frequency-
response calculations. A low contrast compensates for
signal sharpening effects in cameras. The IE Analyzer
v4.0.5 software was used for the calculations, and the
reported values are for an average of ten test-target
images.

5. Performance results
This section presents the performance of the proposed
method. The proposed and other algorithmic methods
were applied to the same interpolated image files used
in the subjective tests. An interpolation algorithm can
filter the images’ structure and noise energy. Using the
same interpolated image files for the objective metrics,
we assessed the same images that the observers saw in
the subjective study.
First, we analyzed the character of the proposed

metric with different candidate-block sizes and different
numbers of the correspondence blocks. Section 5.1 pre-
sents these results. Based on these measurements, we
selected the optimal settings for the performance com-
parison between the proposed and the state-of-the-art
metrics. Section 5.2 gives these results. Section 5.3 com-
pares the performance of the proposed method for the
Gaussian-blurred and JPEG2000-compressed images
from the well-known LIVE database. The performance
metrics were the Pearson linear correlation coefficient
(LCC), Spearman rank-ordered correlation coefficient
(ROCC), and root-mean square error (RMSE).

5.1. The influences of block size and number of blocks
The effects of the measurement-region size on the LCC
values between the objective and subjective data were
studied using measurement area sizes of 25, 50, 75, and
100 pixels. The candidate-block sizes were thus 50, 75,
100, and 125 pixels when located in the reference
images. The reference camera’s candidate blocks were
sorted in ascending order based on the objective func-
tion value. When m = 1, the proposed sharpness metric
used only the correspondence block of the candidate
block with the highest sharpness (i = 1). When m = 2,
the proposed sharpness metric used the correspondence
blocks of the two highest-sharpness candidate blocks (i
= 1,2), and a similar pattern was used for other values
of m.
Figure 8a shows the average LCC plots of Datasets I

and II as a function of the number of blocks for candi-
date-block sizes of 50, 75, 100, and 125 pixels. The plots
are the mean values over the contents before the non-
linear fitting (Equation 5). Based on these results, block
size has an effect on performance. The performance was
highest when the candidate-block size was 100 pixels
and the number of correspondence blocks was 5-8.

Figure 8b shows the LCC plots as a function of corre-
spondence-block number, i. The proposed sharpness
metric was calculated using a single correspondence
block. The candidate-block size was 100 pixels. Based
on Figure 8b, the selected correspondence block affects
performance. The first clear decrease comes when i = 6.
The second decrease comes when i = 21. The perfor-
mance of five first blocks sorted by their Equation (4)
values is thus high compared to the other blocks.
Based on these results, we concluded that the optimal

candidate block size is 100 pixels and the optimal num-
ber of blocks is 5. The candidate blocks were located
using a block size of 100 pixels, and the measurement
area inside the correspondence blocks was 75 pixels.

5.2. Comparison between the metrics
Figure 9a,c shows the subjective sharpness for Datasets I
and II as a function of the proposed metric before the
nonlinear fitting (Equation 5), and Figure 9b,d shows it
afterwards. Figure 9a,c suggests that the relationship
between the subjective and objective sharpness is non-
linear. Because of the nonlinearity of subjective percep-
tion, objective metric values should be fitted before
drawing conclusions regarding performance. In this
study, data from all metrics were fitted using the func-
tion proposed by the VQEG report [50]:

Spred =
p1 − p2

1 + e

⎛
⎝ vi − p3∣∣p4∣∣

⎞
⎠
− p2

(5)

where p1, p2, p3 and p4 are fitting parameters of the
model, Spred is the predicted sharpness, and vi is the
metric value for image i. The fitting parameters, pi, were
obtained by calculating the minimum least-squares,
nonlinear regression using the fminsearch function in
MATLAB.
Table 1 shows the LCC after the nonlinear fitting for the

proposed and reference metrics for Datasets I and II. The
block size of the correspondence blocks was 100 pixels,
and the proposed metric used five correspondence blocks
for the calculations (M = 100, m = 5). The objective metric
values of Dataset II have been normalized in a content-
specific manner. Figure 9c shows data normalization,
where the metric values of Dataset II are scaled from 0 to
1. By contrast, the Dataset I objective metric values are
non-normalized and scaled from 0 to 0.065. Dataset II was
normalized because the subjective data were obtained
using the dynamic reference method. The performances of
the proposed and reference sharpness metrics were higher
with normalization. The subjective data between the con-
tents was comparable with Dataset I, and the perfor-
mances were higher without normalization.
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Based on Table 1 the performance of the proposed
metric was higher than that of the previously published
metrics. When the data were fitted over all contents, the
LCC of the proposed metric was highest. The content-
specific performance of the proposed metric was high-
est, except for Contents 3 and 4 in Dataset I and Con-
tent 4 in Dataset II. In these cases, the performance of
the Wang and Simoncelli RR metric (Content 3 in Data-
set I and Content 4 in Dataset II) or the test-target
MTF50 (Content 4 in Dataset I) was the highest.

Dataset II was more difficult for the proposed metric
than Dataset I. Overall, the LCC for Dataset I was
higher than for Dataset II; even the LCCs for Contents
3 and 4 in Dataset I were low compared to the other
contents. Figure 9 shows the higher data dispersion of
Dataset II compared to Dataset I.
Content independency was tested using the cross-vali-

dation method. Datasets I and II were divided into five
groups, each representing one content. The fitting para-
meters of Equation (5) were estimated using data from

Figure 8 The average LCC of the proposed metric and the subjective sharpness. (a) LCC values for Datasets I and II as a function of the
number of blocks, m, with M = 50, 75, 100, and 125. (b) The average LCC of the proposed metric as a function of the block number, i, when M
= 100.

Figure 9 The subjective sharpness data as a function of the proposed metric. The subjective sharpness data for Dataset I as a function of
the proposed metric (a) before and (b) after the nonlinear fitting. The subjective sharpness data for Dataset II as a function of the proposed
metric (c) before and (d) after the nonlinear fitting.
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the four other groups. These four groups functioned as
the training data. The fifth group was used as the valida-
tion data. The validation was performed five times. All
groups (contents) functioned once as validation data.
Table 2 shows the mean LCC, ROCC, and RMSE values
of the proposed and Wang and Simoncelli RR metrics
for the training and validation groups over all contents.
In addition, the RMSE values are presented for the sub-
jective data. The RMSE values for the subjective data
were calculated by comparing the single-observer values
with the mean values for all observers of a content.
Tables 3 and 4 show the content-specific LCC, ROCC,
and RMSE values of the proposed and Wang and
Simoncelli RR metric for the training and validation
groups.
Tables 2, 3, and 4 show that the proposed metric per-

formance was also high for the validation data. The
mean performance was clearly higher than the Wang
and Simoncelli RR metric performance. According to
Tables 3 and 4, the content-specific LCC values for the
proposed metric were higher than the LCC values of the
Wang and Simoncelli metric, except for Content 3 in
Datasets I and II.
The RMSE is the most interesting feature of the data.

It indicates that the objective metrics outperform the
subjective data metrics in predicting sharpness. This
result mirrors nature and real problems relating to sub-
jective data. In any case, it should be remembered that

goodness-of-fit type metrics, such as the RMSE, are fea-
sible data-quality indicators only for objective data. The
dispersion of subjective data may depend on the study
material and instructions given. Subjective data should
be handled as a probability distribution. It should be
characterized and expressed using at least the mean and
standard deviation.

5.3. Performance using the LIVE image database
The LIVE database [51] contains 29 original images.
The images are distorted using different distortion types
and levels. The proposed metric was evaluated for the
Gaussian-blurred and JPEG2000-compressed images.
Table 5 shows the LCC and ROCC values for the pro-
posed metric.
Based on the results, the performance for the Gaus-

sian-blurred images is high and that for the JPEG2000-
compressed images is lower. A reason for low perfor-
mance of the JPEG2000 images can be the ringing dis-
tortion because of heavy compression. The proposed
method has not been developed for handling distortions
of this type.

6. Conclusions
The analogy between the proposed and test-target meth-
ods arises from using known image properties. Test-tar-
get metrics determine the properties of test-target
patches, and the proposed method can identify the

Table 1 The LCC values of the benchmark metrics and the proposed metric with subjective sharpness.

Metric Dataset I Dataset II

Marziliano
[29]

Ferzli
[30]

Narvekar
[31]

Wang
[18]

MTF50 Proposed Marziliano
[29]

Ferzli
[30]

Narvekar
[31]

Wang
[18]

MTF50 Proposed

Content
1

0.676 0.500 0.488 0.618 0.629 0.840 0.443 0.415 0.240 0.410 0.600 0.770

Content
2

0.489 0.432 0.494 0.886 0.547 0.898 0.142 -0.045 -0.057 0.664 0.595 0.880

Content
3

0.676 0.254 0.498 0.782 0.545 0.748 0.774 0.574 0.725 0.051 0.752 0.805

Content
4

0.683 0.105 0.296 0.361 0.788 0.684 0.793 0.716 0.723 0.815 0.800 0.761

Content
5

0.845 0.471 0.425 0.775 0.554 0.920 0.820 0.886 0.655 0.681 0.696 0.931

Over all 0.733 0.477 0.563 0.786 0.650 0.848 0.589 0.511 0.404 0.538 0.669 0.828

Boldface indicates the best performer.

Table 2 The mean validation performance values for the metric [18] and the proposed metric.

Dataset Metric ROCC LCC RMSE RMSE (subjective)

Training Validation Training Validation Training Validation

I Proposed metric 0.838 0.781 0.843 0.811 8.812 10.241 20.737

Wang [18] 0.766 0.551 0.774 0.411 10.153 10.902

II Proposed metric 0.821 0.785 0.836 0.807 12.318 13.460 22.424

Wang [18] 0.577 0.635 0.630 0.576 16.407 19.195

Boldface indicates the best performer.

Nuutinen et al. EURASIP Journal on Image and Video Processing 2012, 2012:8
http://jivp.eurasipjournals.com/content/2012/1/8

Page 12 of 15



properties of selected regions in natural images. The
advantage of the test-target method is that the test
images always contain areas with desired properties for
the attribute of interest. The proposed method tries to
find appropriate regions in the image. In some cases,
performance can be lower if appropriate regions cannot
be found in the image.
Based on the evaluation results, the proposed method

is promising. The proposed method solves problems
related to the NR, FR, and test-target methods. It con-
siders image properties in a more advanced manner
than the NR method. It can select the best areas of a
scene based on quality attributes. For example, it does
not try to interpret noise energy as image sharpness
energy. Compared to FR methods, the proposed method
does not require a pixel-wise reference image and is

thus applicable to performance studies of digital cam-
eras, as in benchmarking camera phones. Compared to
the test-target methods, the proposed method does not
require the distinctly tedious process of preparing objec-
tive test images. With the proposed method, the same
natural images captured by cameras can be used for
both subjective and objective measurements.
The proposed method predicts the perceived sharp-

ness. The image-quality space of imaging devices is
multi-dimensional. Sharpness is one low-level quality
attribute. Other low-level attributes, including noise and
color reproduction accuracy, are fairly simple to imple-
ment in the proposed framework. Both can be measured
using the same procedure, which locates the appropriate
regions for measurement in the reference image using
block data. Higher-level attributes, including naturalness
and clarity, set higher requirements for the method. We
can expect that new components need to be added in
the framework. The higher-level attributes relate
strongly to image content and semantics. The frame-
work will require advanced computational methods for
content understanding before higher-level attributes or
overall image quality can be calculated.

Table 3 The content-specific validation performance values for Dataset I. Boldface indicates the best performer.

Content Metric ROCC LCC RMSE RMSE (subjective)

Training Validation Training Validation Training Validation

Content 1 Proposed metric 0.857 0.863 0.879 0.884 7.953 10.700 21.651

Wang [18] 0.783 0.692 0.814 0.625 9.711 12.818

Content 2 Proposed metric 0.801 0.901 0.806 0.901 8.461 8.022 25.647

Wang [18] 0.667 0.379 0.665 -0.484 10.677 8.907

Content 3 Proposed metric 0.847 0.478 0.851 0.725 8.514 8.060 16.110

Wang [18] 0.712 0.676 0.730 0.782 11.084 6.177

Content 4 Proposed metric 0.892 0.626 0.900 0.664 7.601 11.056 20.231

Wang [18] 0.835 0.209 0.829 0.362 9.746 12.450

Content 5 Proposed metric 0.866 0.912 0.875 0.913 8.338 8.723 20.045

Wang [18] 0.832 0.797 0.833 0.770 9.548 14.158

Table 4 The content-specific validation performance values for Dataset II.

Content Metric ROCC LCC RMSE RMSE (subjective)

Training Validation Training Validation Training Validation

Content 1 Proposed metric 0.847 0.666 0.838 0.674 12.20 13.620 24.438

Wang [18] 0.847 -0.275 0.838 -0.413 12.20 32.590

Content 2 Proposed metric 0.841 0.820 0.846 0.817 11.098 17.952 24.845

Wang [18] 0.499 0.829 0.591 0.761 16.79 18.620

Content 3 Proposed metric 0.836 0.849 0.857 0.800 12.287 14.265 21.503

Wang [18] 0.563 0.845 0.598 0.822 17.768 14.422

Content 4 Proposed metric 0.792 0.886 0.804 0.890 13.071 10.295 21.435

Wang [18] 0.527 0.877 0.587 0.829 17.78 14.699

Content 5 Proposed metric 0.782 0.903 0.782 0.915 12.935 11.168 19.900

Wang [18] 0.449 0.896 0.537 0.883 17.488 15.642

Boldface indicates the best performer.

Table 5 The evaluation of the proposed metric for
images from the LIVE database

Distortion ROCC LCC

Gaussian blur 0.919 0.902

JPEG2000 0.470 0.526
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