Hindawi Publishing Corporation

EURASIP Journal on Image and Video Processing
Volume 2010, Article ID 524613, 13 pages
doi:10.1155/2010/524613

Research Article

Rate Control Performance under End-User’s Perspective:

A Test Tool

Cristian Koliver,! Jean-Marie Farines,? Barbara Busse,> and Hermann De Meer?

I Center for Computing and Information Technology, University of Caxias do Sul, P.O. Box 1352, Caxias do Sul, Brazil
2 Department of Automation and Systems Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianopolis, Brazil
3 Department of Mathematics and Computer Science, University of Passau, Innstrae 43, 94032 Passau, Germany

Correspondence should be addressed to Cristian Koliver, ckoliver@ucs.br

Received 30 April 2009; Revised 9 November 2009; Accepted 19 January 2010

Academic Editor: Benoit Huet

Copyright © 2010 Cristian Koliver et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Internet has been experiencing a large growth of multimedia traffic of applications performing over an RTP stack implemented
on top of UDP/IP. Since UDP does not offer a congestion control mechanism (unlike TCP), studies on the rate control schemes
have been increasingly done. Usually, new proposals are evaluated, by simulation, in terms of criteria such as fairness towards
competing TCP connections and packet losses. However, results related to other performance aspects—quality achieved, overhead
introduced by the control, and actual throughput after stream adaptation—are difficult to obtain by simulation. In order to provide
actual results about these criteria, we developed a comprehensive live video delivery tool for testing RTP-based controllers. In this
version of the tool, the video is encoded on the fly in the MPEG-2 standard, but we intend to use the H.264/AVC standard as soon as
common PC’s provide enough processing power to encode H.264/AVC live video. The tool allows to easily incorporate new control
schemes. In this paper, we describe the tool architecture and some implementation details. We also evaluate the performance of
the tool itself, in terms of efficacy, accuracy, and efficiency.

1. Introduction and Motivation

Many end-to-end rate control strategies for real-time mul-
timedia applications have been proposed in the last years.
Most of them are driven to UDP applications running over
the best effort Internet. They are control systems-like, on
which the server adapts its throughput based on feedback
messages from the clients. The messages are sent in short
intervals. The goals of the rate control strategies include
to avoid network congestion and provide TCP-friendliness
[1]. Since the RTP (Real-time Transport Protocol) was
designed by the IETF (Internet Engineering Tasking Force)
for multimedia communication in the Internet and offers
support for collecting information about network load,
packet losses and end-to-end delays, the strategies are usually
based upon this protocol (see, e.g., [2, 3]).

Pawlikowski shows in [4] the results of a survey of
over 2246 research papers on the network published in
the IEEE journals and conferences. The survey revealed
that over 51% of all publications on the network adopt

computer simulation to verify their ideas and report
network performance results. As mentioned by Ke et al.
in [5], when evaluating video delivered quality, most of
previous studies adopt a video trace file as video stream
source in their simulation environment. The advantage is
simplicity because researchers do not know much about
the concept of video encoding and decoding. But, in the
same time, the researchers could not dynamically change
the video encoding parameters because of the same reason.
In addition, simulations do not provide results related to
performance criteria such as the quality oscillation and the
overhead introduced by the controller and the actuator. In
this paper, we describe a modular live video delivery tool
designed for testing RTP-based rate controllers. It allows
to easily incorporate new rate control schemes. We also
show the results that the tool can provide and evaluate its
performance in terms of efficacy and efficiency.

The paper is organized as follows. The architecture
of the tool is presented in Section2. In Section 3, we
provide implementation details of the tool. We investigate

the performance of our tool in Section 4. In Section 5, we
review some related work. Finally, in Section 6, we discuss
the results and further work to improve the tool.

2. Architecture

Figure 1 depicts the architecture of our video delivery tool. In
this figure, there is a single client but the server may multicast
the video stream to m clients. At the server-side, the tool is
formed of four separated modules: the MPEG-2 encoder, the
packetizer, the controller, and the actuator.

The encoder compresses the raw video stream (from now
designated as fest video) on the fly and has N QoS parameters
pp (p = 1,2,3,...,N) to be set. They have influence on
the stream bit rate (by affecting the compression rate) and
quality. A combination of QoS parameters settings is a QoS
level. The kth QoS level L is an N-tuple

1ka>> (1)

where k = 1,2,...,I (I is the module of the Cartesian
product of the QoS parameters domains). When the encoder
is set as L, the expected stream bit rate is rny (the nominal
rate) and the quality is gny (the nominal quality). This latter
metric should reflect the stream quality according to the user
perspective. In our tool, it is used to rank QoS levels (see
details in Section 3.1).

The packetizer assembles the MPEG-2 video stream
provided by the encoder in RTP packets and delivers them
over the network. At the client-side, there are two modules:
the depacketizer and the MPEG-2 decoder. The depacketizer
converts RTP packets into MPEG-2 elementary streams and
provides a feedback to the packetizer through receive report
(RR) packets. The packetizer computes and provides the
controller with losses (I) and round trip delay (7). In the
adaptation instant f, the controller computes the target rate
rt(t) providing it to the actuator.

The actuator uses the function QoS to find a QoS level Ly
whose rn;, matches rt(t). The function is

L = {p1>p2>---

QoS : rt(t) — (Li, rng, qni), rng < rt(t). 2)

The function QoS is built from a video designated here as
reference video. The reference video should be of the same
kind (but not the same video) as the test video. We should
at least have three different QoS functions: one built from
an action video, a second one built from a talking head
video, and a third one built from a cartoon video (Different
kinds of video contents affect the compression rate and,
consequently, the stream bit rate. The perceived quality of
the video is also affected by the video content.). We suggest
these three types of videos to build three different QoS
functions based on the video quality test method proposed in
ITU-R BS.116-1 Recommendation, the double-blind triple-
stimulus with hidden reference. The division according to
the video content into action video, talking head video, and
cartoon video is due to that an action video usually contains
much larger movement than a talking head video. Hence,
viewers may easier perceive the jerky motion with the loss
of frames in action video. Cartoons videos, in turn, allow

EURASIP Journal on Image and Video Processing

sudden changes in motion, because users generally expect
artificial movements in this type of video. Then, the actuator
adjusts the encoder parameters

PlaPZa---)PN (3)

to {p1>P2e>- - - » PN,)- The configuration of the encoder after
adapting is L(¢#) = L. Each adaptation instant t + 1, the
actuator measures the encoder throughput between ¢ — 1 and
t (the actual rate achieved after adaption instant t — 1 or
ra(t — 1)) as well as ga(t — 1) (the quality actually achieved
after adapting). These values are provided to the actuator to
tune @oS. Note that it is expected that ra(t — 1) = rt(t - 1) =
rnjand ga(t — 1) =~ qn; (L; = L(t - 1)).

During the transmission, the tool collects and stores
several data that will permit a rate controller performance
analysis, such as: output frame rate, losses, bit rate, and
quality variation, at the server side, and frame rate, at the
client side.

3. Implementation

In this section, we provide the main implementation details
of each module, since some of the achieved results are
closely related to the tool design aspects. Furthermore, some
ideas used here may be useful for other rate controllers
implementations.

3.1. The Controller. The controller can be viewed as a black
box whose inputs are the round trip delay and the loss rate
and the output is the target throughput. It is implemented as
a periodic task whose period is P. Period P is the feedback
period defined by the RTP.

A rate controller may compute rt(t) values slightly
different from r£(t — 1) values (less than 50 Kbps), generating
thus highly granular target bit rates. Therefore, practical use
of rate controller driven to multimedia applications requires
a strategy to configure the application in order to achieve a
throughput similar to the target throughput r¢(t) computed
by the controller. In our tool, the strategy is implemented by
the actuator, described in the next section.

3.1.1. The Actuator. The actuator is responsible for config-
uring the encoder parameters as L; in time ¢, such that
rng is close (but not greater) to the target throughput rt(t)
provided by the controller.

Since the controller can generate values of the target bit
rates differing by some few Kbps, our main concern in the
actuator design was to define a strategy for providing fine
granularity in terms of rn; and gny values. Common strate-
gies of actuation focusing on a single quality dimension (e.g.,
strategies based on frame dropping or quantizer adjustment)
are unsuitable, since they provide a very discrete set of bit
rates values. The application user perceives such limitation as
sudden changes of quality; under the network point of view,
the mapping from rt(t) into a QoS level Li possibly leads
to the bandwidth underutilization. Thus, we opted to use N
dimensional QoS levels composed by the following parame-
ters: alternate scan (als), prediction type (mtc), quantization

EURASIP Journal on Image and Video Processing

qa(t—1) QoS
ooog ra(t—1)
:> Encoder i Actuator
Raw - (1)
frames
Encoded
frames 4“& :>
T
a
RTP I
packetizer Controller
Server
= rP {3 R
packets | | &9 packets
RTP = = RR |
packets packets Clint
ooo gooo
RTP N —
depacketizer Encoded Decoder Raw]
frames frames

FIGURE 1: Video delivery tool architecture.

factor or quantizer (qtz), intra-inter matrix combination
(mgqt), DC precision (dcp), and matrix of coefficients (mcf)
(see http://www.mpeg.org/MSSG/tm5/index.html for more
details about purpose and influence of these parameters on
the compression process). We run several tests using different
set of parameters. The above one was chosen by providing a
fine quality/rate granularity.

The actuator selects the QoS level Ly from a table denoted
by QoSt. QoS is a table whose entries are tuples as

((alsk, mtcy, mqty, gtzi, depr, mefi)s rng, qni), — (4)

where als is the value of parameter als in the k th table entry,
mtcy is the value of parameter mtc, and so on; rny is the
nominal throughput of the encoded video stream configured
as Li; and gny is the nominal quality of this stream given by
the average of the signal-to-noise ratio (SNR). Indeed, QoSr
represents QoS and it is an extension of the degradation
path strategy [6-8], an ordered list of available QoS levels
and encodings and their resource requirements (particularly,
bandwidth). The list is limited by user’s choices and by
hardware constraints. The degradation path varies according
to what the users trade offs are.

3.1.2. Construction of QoSt. QoSr is automatically built
once for a given server prior to the transmission (note that
different power processing servers may generate different
values of rny). The QoSr construction is an iterative process,
where the same short raw clip (the reference video) is
compressed again and again setting the encoder parameters,
in each iteration k, as Li. For each iteration k, the variables
rny and gni are computed. Then, the tuple given by (4) is
stored as a QoS entry. QoS is stored in a file (referenced as
QoS file), to be used for different live video transmissions.
When a video transmission is started, the file is loaded in

the multilist. Figure 2 shows a same frame of the reference
video, used to build QoS for our tests, compressed with the
QoS levels L; (Figure 2(a)) and L; (Figure 2(b)). Note that
whereas rn; ~ rnj, gn; and gn; are very different.

The QoS magnitude may introduce a non-trivial over-
head when seeking a QoS level Ly such that rng ~ rt(t).
In order to reduce this delay, @oSr is represented internally
like a multilist whose first level nodes represent throughput
subranges. Thus, the complexity of seeking is reduced to
the number of subranges rather than the number of QoS
levels. We defined the actuator granularity as 25 Kbps steps
and 10,000 Kbps as the maximum nominal throughput.
The granularity is a constant easily changeable. However,
we believe that lower values improve granularity but, on
the other hand, they degrade accuracy. Therefore, node
0 represents the throughput subrange [0;25[Kbps; node
1 represents [25;50[; node II represents the throughput
subrange [ITx 25; (IT+1) X 25[; the 401st node represents the
subrange [10000; co[. Each first level node IT has associated
a second level list (sublist) whose 7 nodes contain tuples

({als;, mtc;, mqt;, qtzi, dcpi, mc fi), qni) (i = 1,2,...,7). The
value rn; is not stored but it follows the property
rng € [ITx 25;(IT+ 1) x 25]. (5)

Sublists are sorted in descendant order by gn. Figure 3 shows
the multilist structure. Some first level list nodes may contain
an empty sublist; most of the sublists contain thousands of
nodes. During transmission, QoS adjusts itself to the video
which is currently transmitted: at the adaptation instant ¢,
the quality gni and the throughput rnj of the current QoS
level Ly = L(t — 1) are recomputed (gnx — qa(t — 1) and
rng — ra(t — 1)). As a result, a head node of a sublist can
change its position within its sublist or even move to another
sublist. Then, the sublist heads are not static (the reason for
keeping the sublists rather than only the heads).

ML
WORLT

EURASIP Journal on Image and Video Processing

| MPEGA
WORLD

FIGURE 2: Same frame of the reference video when the stream QoS levels are: (a) ((1,4,62,2,8,2),1047.86,8.96) and (b) ((6,6, 10,

4,8,2),1045.09,21.80).

When using the tool for delivering a test video, the
actuator runs concurrently with the controller and performs
only after the end of a GOP because to change some
parameters during a GOP processing may cause side-effects
(e.g., runtime errors due to absence of enough structures to
store macroblocks, since the number of structures allocated
depends on the GOP pattern and if they are allocated at the
beginning of the GOP processing). Therefore, the actuation
period varies according to the GOP time processing and
it is often much shorter than the control period, that is,
while the controller does not compute rt(t), the actuator
goes on adapting the encoder bit rate to rf(t — 1). From
one standpoint, the actuator works unnecessarily. By using a
fine-grained period, however, the actuator constantly tailors
the multilist representing the QoSy table to the test video
content, improving the tool accuracy.

3.1.3. Actuation Steps. Let L; be the current QoS level at
instant t — 1 (i.e., L(t — 1) = L;). In adaptation instant ¢, the
actuator receives the estimated rt(t) value from the controller
and performs the following steps:

(1) seeks a node 7 such that rt(t) > (7 + 1) X 25 and
whose sublist head is the QoS level L; of highest gn;;

(2) sets the encoder as L; (now, L; is the current QoS
level);

(3) updates the nominal throughput and quality values
of L; (rn; — ra(t — 1) and gn; — qa(t — 1)).

For example, let L(—1) = L; = (0,6,2,4,0,0) be the current
QoS level of the stream (see Figure 3(a)); the current nominal
throughput rn(t — 1) is a value between [8525;8550[Kbps
and the current nominal quality gn(t — 1) = gn; is 30.2154.
Let us suppose that at the adaptation instant t, the controller
computes rt(t) = 8612.80. In this case, the actuator:.

(1) seeks, among the first level nodes, that one whose
upper limit of subrange is less or equal to
8612.80 (then, the search goes until the subrange
[8600;8625[). The selected QoS level is that one
with the highest nominal quality whose node is the

sublist head of the subrange [8600;8625[(L; =
(0,3,2,3,8,1) and gn; = 30.9252; Figure 3(b));

(2) sets the encoder as L; (Figure 3(c));

(3) letting 7851.4567 Kbps and 30.2001 dB be, respec-
tively, the throughput and the quality measured by
the actuator between t — 1 and t (we mean, ra(t — 1)
and ga(t — 1)), then it updates rn; to 7851.4567 and
qn; to 30.2001. This implies in relocating L; to the
subrange [7850; 7875].

3.2. Encoder. The encoder is a modified version of the
University of Berkeley’s encoder, which follows the test
model 5 (TM5). Since its source code is freely distributed
and reasonably well documented, this encoder has been
used for educational purposes and as reference for other
implementations. We chose an MPEG-1/2 encoder rather
than H.264/AVC (more suitable for compression on the
fly) due to the simplicity of Berkeley’s encoder code,
what makes it easily modifiable. Furthermore, H.264/AVC
encoders implemented by software have a very high CPU
demand, a critical feature for applications with latency and
real time response requirements. The demand is due to
the high computational complexity of motion estimation,
because of the serial coding nature and high data dependency
of coding procedure in both CAVLC and CABAC. When the
H.264/AVC encoder use is combined with high resolution
video, the only adequate platforms are those with supercom-
puting capabilities (e.g., clusters, multiprocessors and special
purpose devices) [9]. However, the other modules of the
tool are reasonably (but not totally) independent from the
encoder. Thus, the replacement of the MPEG-1/2 encoder
in the tool by another would not be a so hard process (we
describe the main actions required in Section 6).

Originally, the encoder input is a parameter configura-
tion (.par) file with the encoder configuration (resolution,
frame rate, quantization matrices, and so on) and the raw
video file name to be compressed; the output is a file
containing a MPEG-1/2 stream. We modified the Berkeley’s
encoder so that it supports: (1) variable bit rate (VBR)
stream generation: originally, the encoder generates CBR

EURASIP Journal on Image and Video Processing

0:25
25:50
N
N
1050:1075
1075:1100 <<3,7,60,2,8,4>, N <<3,3,62,2,8,0>,
9.0624> 8.9523>
v
N2
<<0,6,2,1,11,6> <<3,4,2,1,11,4> <<3,6,2,1,11,6 <<6,5,2,0,11,7> <<7,4,2,1,9,0>
7850:7875 22501570
28.9683> 28.9683>> 28.9683> 28.9683> 28.8557>
8500:8525 <<1,1,2,4,11,2>, <<A4A6,1L1>, || <<454.6,1L1>,| ... _[<<7.74,6,11,0>,
30.2082> 29.8589>> 29.8589> 29.8589>
8525:8550 <<0,6,2,4,0,0>, <<4,4,4,6,11,1>, <<4,5,4,6,11,1>,
) 30.2154> 29.8589>> 29.8589>
‘l’ Current
\L QoS level
8600:8625 <<0,3,2,3,8,1>,
30.9252>
8625:8650
8650:8675 <<1,1,2,4,8,2>,
29.6843>
+
L
10000:00 <<0,4,2,6,11,1>, N <<74,2,3,8,7>,
33.6111> 30.9336>
(a)
) <<0,6,2,1,11,6>, <<3,4,2,1,11,4>, <<3,6,2,1,11,6, <<6,5,2,0,11,7>, NN <<7,4,2,1,9,0>,
7850:7875 28.9683> 28.9683> 28.9683> 28.9683> 28.8557>
i}
<<1,1,2,4,11,2>, <<4,4,4,6,11,1>, <<4,5,4,6,11,1>, <<7,7,4,6,11,0>,
8500:8525 30.2082>) 29.8589>>] 29.8589> — 29.8589>
<<0,6,2,4,0,0>, <<4,4,4,6,11,1>, <<4,5,4,6,11,1>,
8525:8550 30.2154> 29.8589>>] 29.8589>
J/ Current
J/ QoS level
<<0,3,2,3,8,1>,
8600:8625 30.9252>
~l/ New current
8625:8650 QoS level

1

(b)

FiGgure 3: Continued.

6 EURASIP Journal on Image and Video Processing
N
7850:7875 N <<0,6,2,4,0,0>, <<0,6,2,1,11,6>, N <<3,4,2,1,11,4>, <<3,6,2,1,11,6, INUUIEN <<7,4,2,1,9,0>,
’ 30.2001> 28.9683> 28.9683> 28.9683> 28.8557>
‘l’ Updated
¢ QoS level
8500:8525 |- <<1,1,2,4,11,2>, N <<4,4,4,6,11,1>, N <<4,5,4,6,11,1>, IEGNEN <<7,7,4,6,11,0>,
30.2082> 29.8589>> 29.8589> 29.8589>
\2
<<4,4,4,6,11,1>, <<4,5,4,6,11,1>,
8525:8550 1= 29.8589>> 29.8589>
v
2
<<0,3,2,3,8,1>,
8600:8625 —> 30.9252>
2 Current
8625:8650 QoS level
1

(c)

FIGURE 3: Self-adjustment mechanism of the multilist representing QoS.

streams whose target throughput is specified in the par
file. This throughput is achieved adjusting, during the
compression process, the quantizer value. Our version gen-
erates a VBR stream, since the target throughput generated
by the controller is variable; (2) stream transmission: the
original encoder/decoder are independent programs whose
inputs and outputs are files. Our version follows the client-
server model. The server begins the transmission to a
host (the client) or to a multicast address; (3) command
line configuration: the par file is not used anymore; the
encoder configuration can be done by command line. This
modification is needed to automatically generate the QoSr
table (afterwards, the configuration is not necessary anymore
since the encoder settings change dynamically during video
compression/transmission); (4) mean signal-to-noise ratio
computation: originally, Berkeley encoder computes SNR for
each component Y, U and V of each frame (Y represents
the luminance or luma component of a pixel, U and V the
color difference components or chroma.). Now, it computes
the mean SNR (SNR) between frames i and i + k (k € N*)
according to the following equation:

S SNRy (j) + SNRy () + SNRy ()
SNR = >
k+1

where j is the j th sample (frame), and SNRy(j), SNRy(j)
and SNRy(j) are the SNR values of the frame components
Y, U, and V (SNR(L;) = gn;); and (5) mean throughput
computation: the encoder now computes the throughput
between frames j and j + k. This computation is needed for
the creation and the self-adjustment mechanism of QoSr.

(6)

3.3. SNR as a Quality Measure. Measuring quality is not
always a straightforward process due to the subjective nature
of quality. Usually, video quality is evaluated through two
different approaches: objective and subjective tests.

The objective tests usually do not take the human
perception of the quality into account in their results. It is

well known that the metric used for assessing video quality in
our work—SNR—and the peak signal-to-noise ratio (PSNR)
are not correlated with human visual system (HVS). A
problem of these metrics, based on the mean square error
(MSE) computation, is that even though two images may be
different, the visibility of this difference is not considered.
They do not take into consideration any details of the HVS
such as its ability to “mask” errors that are not significant
to the human comprehension of the image. Cranley et al.
[10] provide an example of this problem. Consider an image
where the pixel values have been altered slightly over the
entire image and another image where a small part of the
image concentrates all alterations. Both may have the same
MSE value, but they appear to be very different to the user.

In addition, SNR does not effectively predict subjective
responses for MPEG video systems. In tests performed by
Nemethova et al. [11], SNR captured only about 21% of the
subjective information that could be captured considering
the level of measurement error present in the subjective and
objective data.

On the other hand, there is not a consensus about
the accuracy of the results provided by traditional video
tests methodologies when used for assessing quality for
multimedia applications. Watson and Sasse, for example,
argue in [12] that ITU-recommended methods for subjective
quality assessment of speech and video are not suitable,
among other reasons, because:

(1) the 5-point quality scales are not viable due to their
vocabulary: it is expected the responses to be biased
towards the bottom of the scale. The DSCQS permits
scoring between the categories (the subject places
a mark anywhere on the rating line, which is then
translated into a score), but it is still the case that
subjects shy away from using the high-end of the scale
and will often place ratings on the boundary of the
“good” and “excellent” ratings;

(2) there is no particular reason for using five scales;

EURASIP Journal on Image and Video Processing

(3) the quality tests typically require the viewer to watch
short sequences of approximately 10 seconds in
duration, and then rate this material. It is not clear
that a 10-second video sequence is long enough to
experience the types of degradations common to
multimedia applications;

(4) the quality judgments are intended to be made
entirely on the basis of the picture quality. It should
be queried whether it makes sense to assess video
on its own (i.e., without audio), since it would be
true to say that the video image in a multimedia
application does not have the same importance as in
the television system;

(5) results based on the difference between the degraded
sequence and the reference used for subjective quality
evaluation can differ significantly in some cases
according to the test method, thus also providing
limited means for the appropriate quality estimation;
and

(6) “one-oftf” quality ratings gathered at the end of
an audiovisual session do not capture change of
perceptions about the quality that users may have
during communication across a packet network with
varying conditions.

In our tool, even newer and more suitable testing
methodology, driven to quantify multimedia applications
quality, are not viable, due to the hundreds of QoS levels
used by the @oS function. An alternative to SNR or PSNR
to rank the quality is the video quality metric (VQM) from
National Telecommunications and Information Administra-
tion (NTIA, http://www.its.bldrdoc.gov/vqm/), a standard-
ized method of objectively measuring video quality that,
according to the ITU-T [13], closely predicts the subjective
quality ratings that would be obtained from a panel of
human viewers. The VQM has the advantage of consisting of
a set of objective metrics, each designed for a different target
application.

4. Tool Performance Analysis

Our tool provides data which allow to evaluate the perfor-
mance of the rate controller in terms of reduction of losses,
smoothness of throughput change, adaptation overhead,
and, mainly, video quality achieved. In this section, however,
we describe results that permit to evaluate the performance
of the tool itself. We used, just as a case-study, a controller
following the Enhanced Loss-Delay Algorithm (LDA+), pro-
posed by Sisalem and Wolisz [14]. The LDA+ controller reg-
ulates the server throughput based on end-to-end feedback
information about losses, delays and the bandwidth capacity
measured by the m clients. This information is sent by the
clients to the server in the RR packets of RTCP protocol. The
LDA+ controller uses additive increase and multiplicative
decrease factors determined dynamically at the server-side to
compute rt(t). The factors come from an estimative of the
current network status from the above information (see [14]
for more details about r£(t) computation). Note that any

rate controller whose inputs and outputs are those showed
in Figure 1 could be used to get the data to evaluate the tool
performance.

The tool performance is evaluated in terms of its efficacy,
accuracy and efficiency.

4.1. Efficacy and Efficiency Aspects. A tool for testing rate
controllers should have a mechanism that efficaciously maps
the target bit rate into QoS application parameters, such
as the application bit rate matches or is close to the target
bit rate. In order to check if our tool reaches this goal, we
measure the error €(rt(t), ra(t)), the difference between the
target bit rate and the bit rate actually achieved.

Another aspect related to the tool efficacy is the achieved
quality. Quality should follow bit rate, that is, the higher bit
rate, the higher quality. If quality does not follow bit rate,
then the actuator is not selecting the best QoS level for a
given target bit rate. In order to evaluate this relationship,
we analyze the behavior of ga(t) compared to ra(t).

In terms of the tool accuracy, we analyze the errors
€(rt(t),rn(t)) and e(rn(t),ra(t)). Large values of the first
one—the difference between the target bit rate computed by
the controller and the bit rate selected in the @QoSt table
by the actuator—indicate that QoS is too coarse. Even if
we have thousands of QoS levels, the set of really useful
QoS levels may be short, since many of them offer the same
quality and/or bit rate. Thus, the granularity de facto can be
known just after generating the multilist representing QoSr,
regardless the actuator granularity (25 Kbps; see Section 3.1).
A coarse QoSt implies sudden changes of quality, even if the
controller gradually changes the allowed bit rate.

The error €(rn(t),ra(t))—the difference between the
nominal bit rate and the bit rate actually achieved—is due
to the differences between the reference and test videos.
The scene content influences the compression rates obtained
in the temporal and spatial redundancy steps. Therefore,
encoded frames of the reference and test videos may present
different compression rates even if they are set to the
same QoS level. Large €(rn(t),ra(t)) values indicate that
the bit rate values of QoSr (rnk) are excessively related
to the reference video. We expect that this error tends to
lower during the transmission, due to the self-adjusting
mechanism of QoSr.

Two important aspects related to the tool efficiency are
CPU and memory consumption. Since the encoding process
has a high CPU and memory usage rate, other tool modules
(controller, actuator, and RTP packetizer) should consume
a minimum of such resources. Otherwise, it can introduce
an overhead in the encoding process increasing the end-to-
end delay. In our tool, the most critical data structure in
terms of memory requirements is the multilist representing
QoSrt. Therefore, our focus here is to analyze if it is possible
to reduce its size. For evaluating the overhead introduced
by the tool, we compare the response time of the actuator
after receiving rt(t) from the controller, since the most time-
consuming module of the tool—excepting the encoder—
is the actuator. (Note that the very high cost process of
building the QoSr file is performed once and prior to

FIGURE 4: Video used in the tests.

the transmission. Furthermore, the same QoSy file can be
used for different video transmissions).

4.2. Test Environment. In order to evaluate the capabilities
of the proposed tool, we conducted a set of transmissions to
investigate its performance and to show the data provided by
it.

The transmissions were performed using a server host
connected to a client host via a router host configured with
the RED algorithm to drop packets whenever congestion
arises in the network. The physically available bandwidth
among the hosts was 100 Mbps, but the server-client link
bandwidth was restricted to 6 Mbps, in order to represent a
network bottleneck. The reference video used to construct
QoSt was a talking heads slow motion clip (the News
clip, see Figure2). The test video was the Salesman clip
(see Figure4) (both videos are raw video sequences in
the YUV QCIF format publicly available for downloading
at http://trace.eas.asu.edu/yuv/) The feedback period is 5
seconds (the RTCP sending interval used by Sisalem and
Woliz in the LDA+ tests).

4.3. Results. Figure 5 shows a histogram representing the
QoS levels distribution of QoSt for a server with two
hyper-Threading Intel Xeon 2.80 GHz processors. Note that
subranges between 1075 and 5000 Kbps concentrate most
of the QoS levels. The subranges below 200 Kbps do not
have any QoS levels (sublists) associated (and there are some
gaps between 200 and 750 Kbps). Therefore, the actuator
has to map the target rates below 200 Kbps into the QoS
level Ly such as rny = 200Kbps. In a rate controller
of a practical application, this gap could be filled by
buffering (e.g., introducing a delay). Indeed, it is possible to
reduce or increase the server throughput through buffering,
regardless the QoS level likely CBR applications. However,
this approach can lead to an unacceptable end-to-end delay
for live video applications.

Figure 6 shows the behavior of rt(t), rn(t) and ra(t).
Note that the behavior of the curve rn is close to the behavior
of the curve rt. In fact, these variables are strongly correlated:
the correlation coefficient obtained was 0.949 and the P-
value is.0.

The harmonic mean of the absolute values of the errors
e(rt(t),rn(t)) is 55.2688 Kbps, a not so large value. As
showed in Figure 7, from time 0 to about 300, the error

EURASIP Journal on Image and Video Processing

200 T T T T T T T T T T
180

2.8 GHz server

Number of entries

0 10 20 30 40 50 60 70 80 90 100
Bit rate (Kbps) x10%

FIGURE 5: QoS levels distribution per throughput subranges (fast

server).

%102
70

60
50
40
30

Bit rate (Kbps)

20

10

o 12 3 4 5 6 7 8 9
Adaptation instant ¢

10 11 12 13 14
x 102

FIGURE 6: Behavior of rt(t), rn(t) and ra(t) during the transmission.

€(rt(t),rn(t)) is negative (i.e., rt(t) < rn(t)) because to
t = [0;300], rt(t) = 0. Thus, rt(¢) is mapped into L; such
as rn; = 200Kbps. If the initial allowed bit rate was set
at 200 Kbps, then the error in ¢t = [0;300] would be next
to 0. From time ¢ = 300 to the end of the transmission
the error was 0 or positive. This error behavior shows that
rt(t) = rn(t). The reason is because, in time t, the actuator
selects a QoS level L such that rny is close (but never greater)
to the target throughput rt(t) provided by the controller
Section 3.1.1. We used this policy since we believe it is better
to underestimate the available bandwidth than taking the risk
of selecting a QoS level Ly such as rax > rt(t), keeping or even
increasing losses.

The relationship between rn and ra is also strong, since
the correlation coefficient is 0.911 and the P-value is also.0
(the curve rn practically overlaps the curve ra, as showed in
Figure 6). The harmonic mean of the errors €(rn(t), ra(t)) is
11.2962 Kbps. This low value indicates that the compression
rate (and the bit rate) achieved in the test video matches
the reference video compression rate, to a same QoS level

EURASIP Journal on Image and Video Processing

x10?
40

Harmonic mean: 55.2688
30

20 ¢
10 ¢

0F

e(rt,rn)

=10

20 +

730 F

—40

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2
Adaptation instant ¢ %10

FiGure 7: Error €(rt(t), rn(t)).

L. According to Figure 8, there are some peaks in the error,
probably due to the fact that the reference video background
is a ballet scene whereas the test video background is a still
scenario (see Figures 2 and 4, resp.). The difference between
rn and ra decreases during the transmission, due to the QoSr
self adjustment mechanism. Figure 9 shows the curve rt(t)
and a curve representing the growth of the summed squared
errors €(rn(t),ra(t)) (SSE€,p,rq(t)) during the transmission.
In this figure, some breakpoints in the curve SSE€,, () are
highlighted by arrows. These breakpoints are the beginning
of ranges where SSE€,,,4(t) grows slowly. Note that these
ranges correspond to ranges in the curve rt(t) whose values
of the target bit rate are equal or similar. The reason is
that the actuator, in a given time ¢, selects a QoS level Ly
such as rnx ~ rt(t). The achieved bit rate is ra(t) and
e€(rn(t),ra(t)) = k. If in time ¢ + 1, rt(t) = rt(t + 1) (or
rt(t) = rt(t+1)), then the actuator again selects L,. However,
this turn rn; corresponds to the rate of the rny of the test
video rather than the reference video, thanks to the @oSy self
adjustment mechanism. Therefore, €(rn(t + 1),ra(t + 1)) =
ke < Ky

According to Figure 10, the error €(rt(t),ra(t)) is often
greater than e(rt(t),rn(t)) and €(rn(t),ra(t)). This was
expected since

e(rt(t),ra(t)) = e(rt(t),ra(t)) + €(rn(t),ra(t)). (7)

In spite of the harmonic mean of |e(rt(t),ra(t))| to be more
than twice the QoSr granularity (64.261 and 25 Kbps, resp.,),
a longer video transmission tends to decrease €(rn(t),ra(t))
and, thus, €(rt(t),ra(t)). In future work, the value 64.261
may be used as a reference to evaluate other strategies for
mapping allowed bit rate into application QoS parameters.
Figure 11 also shows the quality (SNR) dynamics during
the transmission. This curve is similar to the the rn(t)
curve of Figure 6. Therefore, quality really follows bit rate,
indicating that the actuator generally selects the QoS level
that better fulfills a given target bit rate. Figure 11 also shows
the percentage of packets lost between two RR packets. As
expected, there are large quality oscillations, since congestion

%102

H—F—
Harmonic mear): 11.2962

30 F

20 [

10 -

0

e(rn,ra)

=10

20+

730 o

—40

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2
Adaptation instant ¢ %10

FiGure 8: Error €(rn(t), ra(t)).

%102 x10°

80 N 4
-
%

—~ 60 f 13
: > :
3 =
P 40 r 12 g
= N 3
= N N g
A g0t Ny 11%
Accumulate error g
e(rn,ra) 3

e ST g
012 3 45 6 7 8 91011 121314 15
2

Adaptation instant ¢ x10

— rt(t)

FiGURE 9: Accumulated error €(rn(t), ra(t)).

control schemes (such as LDA+) using an Additive-Increase
and Multiplicative-Decrease (AIMD) policy produce abrupt
bit rate changes. Larger oscillations especially occur in the
presence of losses, when rt is suddenly decreased. Indeed,
the AIMD policy is not suitable for multimedia applications
such as live video and streaming, where a relatively smooth
sending rate is of importance. There are rate control
mechanisms—for example, the TCP Friendly Rate Control
(TFRC) [15]—more suitable for this kind of applications.

In terms of bit rate adjustment time, Figure 6 shows
that curve rt(t) practically overlaps curve ra(t), indicating a
trivial control/actuation overhead.

Related to the memory usage, Figure 12 shows the QoS
table values rni X gni. Each point in the graph is a QoS
level and they are sorted by rny. Note that the relationship
between quality and bit rate is not monotonicly increasing.
This means that in QoS there are QoS levels L; and L; such
as

rmi=rnj, qni<qn;, (8)

10

x10?

40 T T T T T T T T T T T T T
Harmonic megn: 64.261

30 1

20 b

10 b

O - 4

e(rt,ra)

—10 | i

720 3 4

—30} 4

—40

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2
Adaptation instant ¢ %10

FiGURE 10: Error €(rt(t), ra(t)).

SNR (dB)

°
°

0 o
0 200 400 600

So-omesotoo—wosted ()
800 1000 1200 1400

— SNR
o Losses (%)

FIGURE 11: SNR behavior during the video transmission.

that is, there are QoS levels requiring more bandwidth, but
offering an inferior quality than others. Figure 2, for exam-
ple, shows the same single frame of a stream compressed with
two QoS levels L; and L; whose entries in QoS are

((1,4,62,2,8,2),1047.86, 8.96),

9)
((6,6,10,4,8,2),1045.09, 21.80),

respectively. Whereas rn; = rnj, qn; and gqn; are very
different (this is very clear comparing Figure 2(a) and
Figure 2(b)). In Figure 12, a set of dispensable QoS levels is
gathered in the rectangle. All of them have a quality equal or
lower than the QoS level marked by the arrow but requiring
more bandwidth.

Moreover, it is widely accepted the limit of 20db as
a minimum of SNR for a picture to be viewable. Then,
we could also discard QoS levels Ly such as gng <
20. (The resultant clip is available at http://www.youtube
.com/watch?v=rw7V7U7qDNO for the reader to draw own
conclusions about the end-quality.) Alternatively, we could
calculate the minimum transmission bit-rate for a minimum
required picture quality based on the Rate Distortion

EURASIP Journal on Image and Video Processing

55

50

45

40 -

SNR (dB)

351

3000 Ll

25

0 2000 4000 6000 8000 10000

Bit rate (Kbps)

+ QoS level
© Quantizer

FIGURE 12: Bit rate X quality.

200 T T T
180 L 870.6 MHz server |

160 b
140 | b
120 ¢ b
100 b
80 b

Number of entries

60 1
40 b
20 b

0

0 10 20 30 40 50 60 70 80 90 100
2
Bit rate (Kbps) x10

FIGURE 13: QoS levels distribution per throughput subranges (slow
server).

theory [16]. The minimum quality should be preferentially
obtained from subjective tests, despite the controversial
about the accuracy of these tests (see Section 3.3). Levels
bellow the minimum quality can be discarded.

Figure 12 also shows gtz X rni. Note that a bit rate
adjustment based only on the quantizer adjustment (a very
common approach) cannot smoothly change the bit rate.

Finally, in order to investigate the influence of processing
power on the QoS levels distribution among the throughput
subranges, we also generated the QoSr table in a slow
server, a Intel Pentium III 870.639 MHz processor. Figure 13
shows a histogram representing the QoS levels distribution
of QoSr for this server. QoS levels are predominantly
concentrated between 1500 and 3000 Kbps. The highest
throughput is around 5000 Kbps. Note that the QoS levels
tend to concentrate on the highest throughput improving
the server processing power and vice-versa. Hence, the
throughput subrange where a QoS level is placed depends on
the server processing power used to generate QoSr.

EURASIP Journal on Image and Video Processing

To summarize, the above results indicate that: (1) QoSt
provides a large and continuous range of possible through-
puts. This is a necessary condition for testing the quality
provided by a rate controller; (2) initial values r7; (nominal
rate) and gnr (nominal quality) of the QoS level Ly in
QoSt, obtained from the reference video, are a reasonable
approximation of the values ra(t) and qa(t), the actual bit
rate and quality achieved for the test video when the encoder
is set to Ly; (3) the minimum and maximum bit rate [m, M|
bounded by the tool depend on the server processing power.
A powerful video server increases both values; (4) quality
oscillation occurs due to the rate controller approach used
to compute the allowed (target) bit rate. The test tool only
tries to reach this target bit rate. If the target bit rate oscillates
or/and changes suddenly, then the quality will also oscillate
or/and change suddenly; and (5) thousands of QoS levels
may be discarded, reducing the tool memory needs.

5. Related Work

Cranley et al. [10] have proposed an optimal way in which
multimedia transmissions should be adapted in response to
network conditions to maximize the user-perceived quality.
Similar to our work, their approach assumes that within the
set of different ways to achieve a target bit rate, there exists an
encoding maximizing the user-perceived quality. Extensive
subjective tests suggests that an Optimal Adaptation Tra-
jectory (OAT) in the space of possible encoding does exist
and that it is related to the content type. In their paper, the
authors explore the possibility of applying objective metrics
to discover the OAT and compare it to those found through
extensive subjective tests.

Differently from the work of Cranley et al., our work
is not supposed to be a model or architecture for QoS
adaptation, but simply a tool for testing and comparing rate
controllers. Therefore, it is a support for the research in this
area. However, the OAT function could be used in our tool as
a degradation path rather than the QoS function.

Yan et al. presents in [17] a media- and TCP-friendly rate-
based congestion control algorithm (MTFRCC) for scalable
video streaming on the Internet. To each transmission at
rate r; € [ms, M] of a sender s is associated a utility
function Us(rs). They assume that U; is twice continuously
differentiable in [m;, M;]. The objective of the algorithm
is to choose source rates r; such that the overall utility
is maximized, that is, to optimize the video quality of all
streams. It should be noted that the utility function varies
according to video coding scheme used. To tailor the utility
function to application quality, Yan et al. use the rate-
distortion function such as

Us(rs) = _Ds(rs): (10)

where Di(rs) is the rate-distortion function for finer grain
scalable (FGS) video derived from a mixture-Laplacian
statistical model of FGS video streams proposed in [18] and
given by:

Di(rs) = 2PVTEPLTEPS, (11)

11

where p;, p,, and p; are parameters to be empirically
evaluated. They stand for the streaming rate and for the
distortion of a single frame. The values of p1, p,, and p3 vary
depending on the source video stream. With the available r, —
D information, the values of pi, p,, and p3 can be computed
during the encoding process, for real-time operation. The
values are computed once for each video sequence and it is
assumed that they remain constant throughout the entire
streaming process. The rate-distortion function in (11) is
strictly decreasing and convex whereas the utility function in
(10) is strictly increasing and concave. In practice, the rate r;
has to be, in the congestion avoidance phase, not smaller than
the bit rate of the base layer my; otherwise the application
quality will be significantly harmed and packet delivery will
be unacceptably delayed.

The QoS function is similar to the U; function, in terms
of purpose and construction. However, in practice, the cost
of determination of the @oS to each QoS level Ly is very high
depending on the encoder parameters compounding Li; we
again highlight that this process is executed once and the
QoS can be used for different video transmissions. On the
other hand, @oS is not bounded to three parameters and can
be more continuous than U,. Moreover, QoS is tailored to
the video during the transmission, that is, the quality and
bit rate associated to the QoS levels do not remain constant
throughout the entire video delivery process.

Ke et al. present in [5], a simulation tool integrating
the EvalVid tool-set [19] and NS-2. EvalVid is a tool-
set for evaluating video quality transmitted over a real or
simulated communication network. The EvalVid’s purpose is
to assist researchers in evaluating their network mechanisms
or designed protocols in terms of user-perceived video
quality over a real or simulated network. To improve the
simulation model, Ke et al. enhanced some interfaces into
EvalVid. With the enhancement, the tool-set enables not only
network-related researchers to evaluate real video streams on
their proposed network designs or protocols, but also video-
related researchers to evaluate video quality of their designed
video coding mechanisms using a more realistic network.
On the one hand, the work is not bounded by testing rate
controllers and permits tests without a real environment and
controller implementation. On the other hand, the tool set
uses encoded video trace files generated from YUV files. This
aspect became hard to test controllers based on setting the
encoder parameters in real-time.

Lotfallah et al. propose in [20] a framework for advanced
video traces which enables the evaluation of video transmis-
sion over lossy packet networks, without requiring the actual
videos. The two main components of this framework are
(1) advanced video traces which combine the conventional
video traces with a parsimonious set of visual content
descriptors, and (2) quality prediction schemes that based on
the visual content descriptors provide an accurate prediction
of the quality of the reconstructed video after lossy network
transport. The video traces represent a small number of
encodings (versions) with different encoding bit rates for
each video sequence and estimates the reconstructed quality
using the motion activity levels of the underlying visual
content (or, in general, any content descriptor(s) that highly

12

correlate with the reconstructed quality). The number of
provided QoS levels is bounded by the number of versions,
whereas in our work this number is given by the number and
the nature of the QoS parameters used.

6. Conclusions and Future Work

In this paper, we described a live video delivery tool that
can be used to test RTP-based rate controllers providing
complementary results to those ones achieved by simulation.
Particularly, it is useful to provide results related to actual
achieved quality, overhead introduced by the control, and
actual throughput. The tool may aid rate controller designers
to test their strategies regarding performance aspects hard to
evaluate by simulation (e.g., control overhead, frame rate at
the clients, quality achieved, quality oscillation, etc.). Since it
is highly modular, the tool can use any controller structured
as a black box whose inputs are round trip delay and loss rate
and the output is the target throughput.

Our results indicate that (1) the actuator often finds a
nominal throughput close to the target throughput; (2) the
self adjustment mechanism of QoSt satisfactorily corrects
the throughput and quality nominal values of the QoS
levels used for rate adapting during the video transmission
(note that these values are strongly related to the reference
video in the beginning of the transmission); and (3) the
encoding/control overhead is not critical in the end-to-end
delay when the server answers a single video request.

Even though our tool has been designed and imple-
mented to be a tool for RTP-based controller test support,
its actuation strategy can be exploited as part of a rate
control mechanism of live video delivery tools. Note that
it was not our intent to build a fully functional live video
application since there are many libraries supporting the
development of such applications and even fully functional
open source applications. However, to provide support for
different encoders, many of them have a large and complex
source code. In addition, some of them generate only CBR
streams. Therefore, our tool can be used to test and compare
different control approaches prior to the construction of a
live video delivery application with rate control.

Some limitations of the current version of our tool
include: use of pre-stored raw video rather than real-time
captured video, absence of client-side buffering for smooth-
ing jitter, and MPEG-2 encoding rather than H.264/AVC,
which delivers similar quality at lower data rates. However,
a future work includes to replace the MPEG-2 encoder by
the H.264/AVC Scalable Video Coding (SVC) to define QoS
levels in terms of the multi-dimensional scalability provided
by this encoder [21] (previous work on rate control for
H.264/AVC/SVC streams was primarily based on changing
resolution layers by using the FGS feature. However, FGS—
include in a draft document—has been removed according
to [22].). The use of a VBR H.264/AVC/SVC encoder
performing transmission over an RTP stack rather than
the current MPEG-2 would request minor modifications.
More precisely, it would be necessary: (1) to identify in the
source code the variables used for the encoder settings and

EURASIP Journal on Image and Video Processing

select those ones to compound QoS levels; (2) to allocate
them as shared memory assuring mutual exclusion (since
the actuator runs concurrently with the encoder); and (3) to
identify the relationship of these variables with others and
the encoder data structures, especially for variables related
to the temporal compression (this is the hardest part!).
A currently practical difficulty in using H.264/AVC is the
time demanded by this encoder to compress a video in
real-time, when the server is a common PC. We performed
some tests on a two processors Intel Pentium CPU 2.80 GHz
machine using the JM version 15.0H.264/AVC encoder
implementation (http://iphome.hhi.de/suehring/tml/). The
frame rate of encoding a raw video (QCIF format, 30 fps, and
baseline profile), for example, was less than 1 fps. Neverthe-
less, we believe presently common PC’s will provide enough
processing power to encode live video in the H.264/AVC
standard by software.

Another future work is to test and compare the perfor-
mance of more recent TCP-friendly rate control mechanisms
using our tool, such as TFRC [15].

Currently, we are designing a new version of the tool
based on the Datagram Congestion Control Protocol
(DCCP) rather than RTP over UDP. By using this new
version, we will be able to verify the actual video quality
provided by different congestion control mechanisms, such
as CCID 2 (Congestion Control ID 2), CCID 3, and CCID 4,
when used to transport both streaming applications data as
live video data applications.

The resultant video received by the client in the
tests can be viewed at http://www.youtube.com/watch?v=
rw7V7U7qDNO. By watching this video, the reader can draw
own conclusions about the quality variation.

References

[1] J.-Y. L. Boudec, “Rate Adaptation, Congestion Control and
Fairness: a Tutorial,” 2008.

[2] C. Koliver, K. Nahrstedt, J.-M. Farines, J. D. S. Fraga, and
S. A. Sandri, “Specification, mapping and control for QoS
adaptation,” Real-Time Systems, vol. 23, no. 1-2, pp. 143-174,
2002.

[3] S. Lee and K. Chung, “TCP-friendly rate control scheme
based on RTP,” in Proceedings of the International Conference
on Information Networking (ICOIN ’06), 1. Chong and K.
Kawahara, Eds., vol. 3961 of Lecture Notes in Computer Science,
pp- 660669, Springer, Sendai, Japan, 2006.

[4] K. Pawlikowski, “Do not trust all simulation studies of
telecommunication networks,” in Proceedings of the Interna-
tional Conference on Information Networking (ICOIN ’03), vol.
2662, pp. 3-12, Jeju Island, Korea, 2003.

[5] C.-H. Ke, C.-H. Lin, C.-K. Shieh, and W.-S. Hwang, “A novel
realistic simulation tool for video transmission over wireless
network,” in Proceedings of the IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing,
pp- 275-281, Los Alamitos, Calif, USA, June 2006.

[6] S. Fischer, A. Hafid, G. V. Bochmann, and H. de Meer,
“Cooperative QoS management for multimedia applications,”
in Proceedings of the 4th IEEE International Conference on
Multimedia Computing and Systems (ICMCS °97), pp. 303—
310, IEEE Press, Ottawa, Canada, June 1997.

EURASIP Journal on Image and Video Processing

(7]

(8]

(9]

(11]

M. Fry, A. Seneviratne, and V. Witana, “Delivering QoS
controlled continuous media on the World Wide,” in Proceed-
ings of 4th IFIP International Workshop on Quality of Service
(IWQoS ’96), Paris, France, 1996.

G. Ghinea and J. P. Thomas, “Improving perceptual multi-
media quality with an adaptable communication protocol,”
Journal of Computing and Information Technology, vol. 13, no.
2, pp. 149161, 2005.

A. Rodriguez, A. Gonzalez, and M. P. Malumbres, “Hier-
archical parallelization of an H.264/AVC video encoder,” in
Proceedings of the IEEE International Symposium on Parallel
Computing in Electrical Engineering (PARELEC "06), pp. 363—
368, IEEE Computer Society, Los Alamitos, Calif, USA, 2006.
N. Cranley, P. Perry, and L. Murphy, “User perception
of adapting video quality,” International Journal of Human
Computer Studies, vol. 64, no. 8, pp. 637-647, 2006.

O. Nemethova, M. Ries, E. Siffel, and M. Rupp, “Quality
assessment for H.264 coded low-rate and low-resolution video
sequences,” in Proceedings of the 3rd IASTED International
Conference on Communications, Internet, and Information
Technology (CIIT °04), pp. 136-140, St. Thomas, Va, USA,
November 2004.

A. Watson and M. A. Sasse, “Measuring perceived quality of
speech and video in multimedia conferencing applications,”
in Proceedings of the 6th ACM International Conference on
Multimedia, pp. 55-60, Bristol, UK, September 1998.

ITU-T Recommendation J.149, “Method for specifying accu-
racy and crosscalibration of video quality metrics (VQM),”
2004.

D. Sisalem and A. Wolisz, “LDA+: a TCP-friendly adaptation
scheme for multimedia communication,” in Proceedings of
the 1EEE International Conference on Multi-Media and Expo
(ICME °00), pp. 1619-1622, IEEE Press, New York, NY, USA,
July-August 2000.

S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly
Rate Control (TFRC): Protocol Specification,” RFC 5348
(Proposed Standard), September 2008.

L. D. Davisson, “Rate-distortion theory and application,”
Proceedings of the IEEE, vol. 60, no. 7, pp. 800808, 1972.

J. Yan, K. Katrinis, M. May, and B. Plattner, “Media- and TCP-
friendly congestion control for scalable video streams,” IEEE
Transactions on Multimedia, vol. 8, no. 2, pp. 196-206, 2006.
M. Dai, D. Loguinov, and H. Radha, “Rate-distortion model-
ing of scalable video coders,” in Proceedings of the International
Conference on Image Processing (ICIP °04), vol. 5, pp. 1093—
1096, Society Press, October 2004.

J. Klaue, B. Rathke, and A. Wolisz, “EvalVid—a framework
for video transmission and quality evaluation,” in Proceedings
of the 13th International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation, pp. 255-272,
Urbana, 111, USA, 2003.

O. A. Lotfallah, M. Reisslein, and S. Panchanathan, “A
framework for advanced video traces: evaluating visual quality
for video transmission over lossy networks,” EURASIP Journal
on Applied Signal Processing, vol. 2006, Article ID 42083, 21
pages, 2006.

P. Ni, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Fine-
grained scalable streaming from coarse-grained videos,” in
Proceedings of the 18th International Workshop on Network
and Operating System Support for Digital Audio and Video
(NOSSDAV °09), pp. 103-108, Williamsburg, Va, USA, June
2009.

ITU-T Recommendation H.264 H.264, “Advanced video
coding for generic audiovisual services,” November 2007.

13

	1. Introduction and Motivation
	2. Architecture
	3. Implementation
	3.1. The Controller
	3.1.1. The Actuator
	3.1.2. Construction of QoST
	3.1.3. Actuation Steps

	3.2. Encoder
	3.3. SNR as a Quality Measure

	4. Tool Performance Analysis
	4.1. Efficacy and Efficiency Aspects
	4.2. Test Environment
	4.3. Results

	5. Related Work
	6. Conclusions and FutureWork
	References

