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Action recognition from video is a problem that hasmany important applications to humanmotion analysis. In real-world settings,
the viewpoint of the camera cannot always be fixed relative to the subject, so view-invariant action recognition methods are
needed. Previous view-invariant methods use multiple cameras in both the training and testing phases of action recognition or
require storing many examples of a single action from multiple viewpoints. In this paper, we present a framework for learning a
compact representation of primitive actions (e.g., walk, punch, kick, sit) that can be used for video obtained from a single camera
for simultaneous action recognition and viewpoint estimation. Using our method, which models the low-dimensional structure
of these actions relative to viewpoint, we show recognition rates on a publicly available dataset previously only achieved using
multiple simultaneous views.
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1. Introduction

Video-based human motion analysis and action recognition
currently lags far behind the quality achieved using marker-
based methods, which have shown to be very effective
for obtaining accurate body models and pose estimates.
However, marker-based studies can only be conducted
reliably in a laboratory environment and, therefore, preclude
in situ analysis. Comparable results derived from video
would be useful in a multitude of practical applications. For
instance, in the areas of athletics and physiotherapy, it is often
necessary to recognize and accurately measure the actions of
a human subject. Video-based solutions hold the promise
for action recognition in more natural environments, for
example, an athlete during a match or a patient at home.

Until recently, most of the research on action recognition
focused on actions from a fixed, or canonical, viewpoint [1–
4]. The general approach of these view-dependent methods
relies on (1) a training phase, in which a model of an
action primitive (a simple motion such as step, punch, or
sit) is constructed, and (2) a testing phase, in which the
constructed model is used to search the space-time volume
of a video to find an instance (or close match) of the action.
Because a robust human motion analysis system cannot rely

on a subject performing an action in only a single, fixed
view relative to the camera, viewpoint-invariant methods
have been developed which use multiple cameras in both the
training and testing phases of action recognition [5, 6]. These
methods address the problem of view-dependence of the
single camera systems, but generally require a multicamera
laboratory setting similar in complexity to and equally as
restrictive as marker-based solutions.

In this paper, we present a framework for learning a
view-invariant representation of primitive actions (e.g., walk,
punch, kick) that can be used for video obtained from a
single camera, such as any one of the views in Figure 1. Each
image in Figure 1 shows a keyframe from video of an actor
performing an action captured from multiple viewpoints.
In our framework, we model how the appearance of an
action varies over multiple viewpoints by using manifold
learning to discover the low-dimensional representation of
action primitives. This new compact representation allows
us to perform action recognition on single-view input, the
type that can be easily recorded and collected outside of
laboratory environments.

Section 2 opens with a review of related work in both
view-dependent and view-invariant action recognition. In
Section 3, we describe the two motion descriptors that we
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Figure 1: These images show four keyframes from various viewpoints at the same time-point of an actor checking her watch. In this paper,
we develop a framework to learn functions over classes of action for recognition from a continuous set of viewpoints.

will test in our framework; one is a well-known descriptor
that we modify for our purposes and the second we devel-
oped for use in this framework. We continue in Section 4 by
describing how we learn a low-dimensional representation
of these descriptors. In Section 5 we put everything together
to obtain a compact view-invariant action descriptor. In
Section 6, we demonstrate that the viewpoint manifold
representation provides a compact representation of actions
across viewpoints and can be used for discriminative classi-
fication tasks. Finally, we conclude in Section 7 with some
closing remarks.

2. RelatedWork

The literature on human motion analysis and action recog-
nition is vast. A recent survey [7] provides a taxonomy of
many techniques. In this section, we focus on a few existing
methods which are most related to the work presented in this
paper.

Early research on action recognition relied on single,
fixed camera approaches. One of the most well-known
approaches is temporal templates [1] which model actions
as images that encode the spatial and temporal extent of
visual flow in a scene. In Section 3 we describe temporal
templates in more detail as we will apply this descriptor
to our framework. Other view-dependent methods include
extending 2D image correlation to 3D for space-time blocks
[2]. In addition to developing novel motion descriptors,
other recent work has focused on the additional difficulties
in matching image-based time-series data, such as the
intraclass variability in the duration of different people
performing the same action [3, 4] or robust segmentation
[8].

Over time, researchers have begun to focus on using mul-
tiple cameras to support view-invariant action recognition.
One method extends temporal templates by constructing a
3D representation, known as a motion history volume [5].
This extension calculates the spatial and temporal extent of
the visual hull, rather than the silhouette, of an action. In
[6] the authors exploit properties of the epipolar geometry
of a pair of independently moving cameras focused on a
similar target to achieve view-invariance from a scene. In
these view-invariant methods for action recognition, the
models implicitly integrate over the viewpoint parameter by
constructing 3D models.

In [9], the authors rely on the compression possible due
to the similarity of various actions at particular poses to
maintain a compact (|actions|∗|viewpoints|) representation
for single-view recognition. In [10], the authors use a set of
linear basis functions to encode for the change in position of
a set of feature points of an actor performing a set of actions.
Our framework is most related to this approach. However,
instead of learning an arbitrary set of linear basis functions,
we model the change in appearance of an action due to
viewpoint as a low-dimensional manifold parameterized by
the primary transformation, in this case, viewpoint of the
camera relative to the actor.

3. DescribingMotion

In this paper, the goal is to model the appearance of an action
from a single camera as a function of the viewpoint of the
camera. There exist a number of motion descriptors, which
are the fundamental component of all action recognition
systems. In this paper, we will apply our framework to two
action descriptors: the well-known motion history images
(MHIs) of temporal templates [1] and our descriptor,
the R transform surface (RXS) [11], which extends a
recently developed shape descriptor, the R transform [12],
into a motion descriptor. In this section, we review the
MHI motion descriptor and introduce the RXS motion
descriptor.

3.1. Motion History Images. Motion history images encode
motion information in video using a human-readable repre-
sentation whose values describe the history of motion at each
pixel location in the field of view. The output descriptor is a
false image of the same size in the x- and y- dimensions as
frames from the input video. To create an MHI, H , using the
video as input, construct a binary valued function D(x, y, t),
where D(x, y, t) = 1 if motion occurred at pixel location
(x, y) in frame t. Then, the MHI is defined as

Hτ
(
x, y, t

) =
⎧
⎨

⎩

τ if D
(
x, y, t

)=1,

max
(
0,Hτ

(
x, y, t−1)−1) otherwise,

(1)

where τ is the duration of the motion or the length of the
video clip if it has been preprocessed to contain a single
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action. Intuitively, for pixel locations (x, y), Hτ(x, y, t) is the
maximum value τ for motion occurring at time t and if there
is no motion at (x, y), the previous intensity, Hτ(x, y, t − 1)
is at the pixel location which is carried over in a linearly
decreasing fashion. Figure 2 shows two examples of the MHI
constructed from an input video. Each row of the figure
shows four keyframes from a video clip in which actors
are performing an action (punching and kicking, resp.) and
the associated motion history image representation. In our
implementation, we replace the binary valued function, D,
with the silhouette occupancy function, as described in [5].
The net effect of this change is that style of the actor (body
shape, size, etc.) is encoded in the MHI, in addition to the
motion. One advantage of the MHI is the human-readability
of the descriptor.

3.2. R Transform Surface Motion Descriptor. In addition to
testing our approach using an existing motion descriptor,
we also develop the RXS motion descriptor. The RXS is
based on the R transform which was developed as a shape
descriptor to be used in object classification from images.
Compared to competing representations, the R transform
is computationally efficient and robust to many common
image transformations. Here, we describe the R transform
and our extension into a surface representation for use in
action recognition.

The R transform converts a silhouette image to a
compact 1D signal through the use of the two-dimensional
Radon transform [13]. In image processing, the Radon
transform is commonly used to find lines in images and
for medical image reconstruction. For an image I(x, y), the
Radon transform, g(ρ, θ), using polar coordinates (ρ, θ), is
defined as

g
(
ρ, θ
) =

∑

x

∑

y

I
(
x, y

)
δ
(
x cos θ + y sin θ − ρ

)
, (2)

where δ is the Dirac delta function which outputs 1 if the
input is 0 and 0 otherwise. Intuitively, g(ρ, θ) is the line
integral through image I of the line with parameters (ρ, θ).

The R transform extends the Radon transform by
calculating the sum of the squared Radon transform values
for all of the lines of the same angle, θ, in an image:

R(θ) =
∑

ρ

g2
(
ρ, θ
)
. (3)

Figure 3 shows three examples of an image, the derived
silhouette showing the segmentation between the actor and
the background, the Radon transform of the silhouette and
theR transform.

The R transform has several properties that make it
particularly useful for representing image silhouettes and
extensible into a motion descriptor. First, the transform is
translation-invariant. Translations of the silhouette do not
affect the value of theR transform, which allows us to match
images of actors performing the same action regardless of
their position in the image frame. Second, the R transform
has been shown to be robust to noisy silhouettes (e.g.,
holes, disjoint silhouettes). This invariance to imperfect

silhouettes is useful to our method in that extremely accurate
segmentation of the actor from the background is not
necessary, which can be difficult in certain environments.
Third, when normalized, theR transform is scale-invariant.
Scaling the silhouette image results in an amplitude scaling
of the R transform, so for our work, we use the normalized
transform:

R′(θ) = R(θ)
maxθ′(R(θ′))

. (4)

TheR transform is not rotation-invariant. A rotation in the
silhouette results in a phase shift in the R transform signal.
For human action recognition, this is generally not an issue,
as this effect would only be achieved by a camera rotation
about its optical axis which is quite rare for natural video.

In previous work using the R transform for action
recognition [14], the authors trainedHiddenMarkovModels
to learn which sets of unorderedR transforms corresponded
to which action. In this paper, we extend the R transform
to include the natural temporal component of actions. This
generalizes the R transform curve to the R transform
surface (RXS), our representation of actions. We define this
surface for a video of silhouette images I(x, y, t) as:

S(θ, t) =R′
t(θ), (5)

where R′
t(θ) is the normalized R transform for frame t in

I . Each row of Figure 4 shows four silhouette keyframes,
the associated R transform curves, and the R transform
surface motion descriptor generated for the video. Each
video contains roughly 70 frames, but we scaled the time axis
from 0 to 1 so that our descriptor is invariant to the frame
rate of the video and robust to the duration of an action.

The first row of Figure 4 depicts the visually-intuitive
surface representation for the “sit down” action. The
actor begins in the standing position, and his silhouette
approximates a vertically-elongated rectangle. This results in
relatively higher values for the vertical line scans (θ near 0
and π). As the action continues, and the actor takes the seated
position, the silhouette approximates a circle. This results
in roughly equal values for all of the line scans in the R
transform and a flatter representation in the surface. Other
motions, such as punching and kicking, have less dramatic,
but similarly intuitive R transform surface representations.
Figure 5 summarizes the process for creating a R transform
surface motion descriptor from video.

In the following section, we describe our approach to
view-invariant action recognition, which relies on apply-
ing manifold learning techniques to this particular action
descriptor.

4. Viewpoint Manifold

Our goal is to provide a compact representation for view-
invariant action recognition. Our approach is to learn a
model which is a function of viewpoint. In this section,
we describe methods for automatically learning a low-
dimensional representation for high-dimensional data (e.g.,
R transform surfaces and motion history images), which lie
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Action keyframes MHI

Figure 2: Each row shows four keyframes from different actions and the associated motion history image.
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Figure 3: Each row shows the steps to apply theR transform to an image. The images (first column) are segmented to recover the silhouette
(second column). The 2D radon (third column) is calculated and, using (3), the Radon transform is converted to the R transform (fourth
column).
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Figure 4: Each row shows a set of silhouette keyframes from videos of an actor performing sitting, punching, and kicking, respectively. The
corresponding R transform curve is shown below each keyframe. The graph on the right shows the RXS motion descriptor for the video
clip.

on or near a low-dimensional manifold. By learning how the
data varies as a function of the dominant cause of change
(viewpoint, in our case), we can provide a representation
which does not require storing examples of all possible
viewpoints of the actions of interest.

4.1. Dimensionality Reduction. Owing to the curse of dimen-
sionality, most data analysis techniques on high-dimensional
points and point sets do not work well. One strategy to
overcome this problem is to find an equivalent lower dimen-
sional representation of the data. Dimensionality reduction
is the technique of automatically learning a low-dimensional
representation for data. Classical dimensionality reduction
techniques rely on Principal Component Analysis (PCA)

[15] and Independent Component Analysis (ICA) [16].
These methods seek to represent data as linear combinations
of a small number of basis vectors. However, many datasets,
including the action descriptors considered in this work,
tend to vary in ways which are very poorly approximated by
changes in linear basis functions.

Techniques in the field of manifold learning embed
high-dimensional data points which lie on a nonlinear
manifold onto a corresponding lower-dimensional space.
There exists a number of automated techniques for learning
these low-dimensional embeddings, such as Isomap [17],
semidefinite embedding (SDE) [18], and LLE [19]. These
methods have been used in computer vision and graphics for
many applications, including medical image segmentation
[20] and light parameter estimation from single images [21].
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Figure 5: Diagram depicting the construction of theRXS motion descriptor for a set of images.

In this paper, we use the Isomap algorithm, but the general
approach could be applied with any of the other nonlinear
dimensionality algorithms.

Isomap embeds points in a low-dimensional Euclidean
space by preserving the geodesic pair-wise distances of the
points in original space. In order to estimate the (unknown)
geodesic distances, distances are calculated between points
in a trusted neighborhood and generalized into geodesic
distances using an all-pairs shortest-path algorithm. As is the
case with many manifold learning algorithms, discovering
which points belong in the trusted neighborhood is a
fundamental operation. Typically, the Euclidean distance
metric is used, but other distance measures have been shown
to lead to a more accurate embedding of the original data. In
the following section, we discuss how the choice of metrics
to calculate the distance between motion descriptors affects
learning a low-dimensional embedding, and present the
distancemetrics, both forMHI andRXS, that we use to learn
the viewpoint manifolds.

4.2. Distances on the Viewpoint Manifold. Recently, there
has been some work [22, 23] on the analysis of formal
relationships between the transformation group underlying
the image variation and the learned manifold. In [23], a
framework is presented for selecting image distance metrics
for use with manifold learning. Leveraging ideas from the
field of Pattern Theory, the authors propose a set of distance
metrics which correspond to common image differences,
such as non-rigid transformations and lighting changes. For
the work of this paper, the data we seek to analyze differs
from the natural images described in that work, in that they
are compact representations of video and the differences
between MHIs or RXS which differ due to viewpoint or
appearance are not accurately estimated using the metrics
presented.

4.2.1. MHI Distance Metric. The most common distance
metric used to classify MHIs is the Mahalanobis distance
between feature vectors of the Hu moments [24]. It has
been shown that this metric provides sufficient discrimi-
native power for classification tasks. However, as we show
in Figure 6, this metric does not adequately estimate the
distances on the manifold of MHIs that vary only due to the
viewpoint of the camera. For the check-watch action depicted
in Figure 1,MHIs were calculated at 64 evenly-spaced camera
positions related by a rotation around the vertical axis of the
actor. Figure 6 shows the 3D Isomap embedding of this set of
MHIs, where each point represents a single MHI embedded
in the low-dimensional space, and the line connects adjacent
positions. Given that these images are related by a single
degree-of-freedom, one would expected the points to lie on
some twisted 1-manifold in the feature space. In Figure 6(a),
visual inspection shows that this structure is not recovered
using Isomap and Hu moment-based metric.

To address this problem, we propose using a rotation-,
translation-, and scale-invariant Fourier-based transform
[25].We apply the following steps to calculate the feature vec-
tor, HF(r,φ) for each MHI, H(x, y). To achieve translation-
invariance, we apply the 2D Fourier transform to the MHI:

F(u, v) = F
(
H
(
x, y

))
, (6)

F is then converted to a polar representation, P(r, θ), so that
rotations in the original image correspond to translations
in P along the θ axis. Then, to achieve rotation-invariance
and output the Fourier-based feature vector, HF(r,φ), the
1D Fourier transform is calculated along the axis of the polar
angle, θ:

HF
(
r,φ
) = |Fθ(P(r, θ))|. (7)

Then, the distance between two MHIs Hi and Hj is simply
the L2-norm of HF

i and HF
j . With this metric, we recover
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Figure 6: These graphs depict the 3-dimensional Isomap embedding of the motion history images of an actor performing the check-watch
motion from camera viewpoints evenly spaced around the vertical axis. (a) shows the embedding using the Hu moment-based metric
commonly used to classify motion history images and (b) shows the embedding using the Fourier-based metric described in Section 4.2.
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Figure 7: The graph in the center shows the 3D embedding of motion history images from various viewpoints of an actor performing the
check-watch action. For four locations, the corresponding MHI motion descriptors are shown.

the embedding shown in Figure 6(b) which more accurately
represents the change in this dataset. In Figure 7 we see the
3D Isomap embedding and the correspondingMHIs for four
marked locations.

4.2.2. R Transform Surface Distance Metric. The R trans-
form represents the distribution of pixels in the silhouette
image. Therefore, to represent differences in the R trans-
form, and similarly the RXS, we select a metric for mea-
suring differences in distributions. We use the 2D diffusion
distance metric [26], which approximates the Earth Mover’s
Distance [27] between histograms. This computationally
efficient metric formulates the problem as a heat diffusion
process by estimating the amount of diffusion from one
distribution to the other.

Figure 8 shows a comparison of the diffusion distance
metric with the standard Euclidean metric. The graphs show
the 3D Isomap embedding using the traditional Euclidean

distance and the diffusion distance on a dataset containing
R transform surfaces of 64 evenly-spaced views of an actor
performing an action. As with the MHIs, these feature
vectors are related by a smooth change in a single degree of
freedom, and should lie on or near a 1-manifold embedded
in the feature space. The embeddings using the diffusion
distance metric appear to represent a more accurate measure
of the change in the data due to viewpoint. Figure 9 shows
the 3D Isomap embedding of 64 R transform surfaces from
various viewpoints of an actor performing the punching
action. For the four marked locations, the corresponding
high-dimensionalR transform surfaces are displayed.

For the examples in this paper, we use data obtained from
viewpoints around the vertical axis of the actor. This data lies
on a 1D cyclic manifold. Most manifold learning methods do
not perform well on this type of data; however, we employ
a common technique [28] and first embed this data into
three dimensions, then to obtain the 1D embedding, we
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Figure 9: The graph in the center shows the 3D embedding of 64R transform surfaces from various viewpoints of an actor punching. For
four locations, the correspondingR transform surface motion descriptors are shown.

parameterize this closed curve using φ ∈ [0, 1] where the
origin is an arbitrarily selected location on the curve.

It is worth noting that even though the input data
was obtained from evenly-spaced viewing angles, the points
in the embedding are not evenly spaced. The learned
embedding, and thus the viewpoint parameter, φ, represents
the manifold by the amount of change between surfaces and
not necessarily the amount of change between the viewpoint.
This is beneficial to us, as the learned parameter, φ, provides
an action-invariant measure of the viewpoint, whereas a
change in theR transform surfaces as a function of a change
in viewing angle would be dependent on the specific action
being performed. In the following section, we describe how
we use this learned viewpoint parameter, φ, to construct a
compact view-invariant representation of action.

5. Generating Action Functions

In this section, we leverage the power of learning the
embedding for these motion descriptors. In Section 4, we
showed how each action descriptor can vary smoothly
as a function of viewpoint and how this parameter can
be learned using manifold learning. Here, we develop
a compact view-invariant action descriptor, using the
learned parameterization, φ. So, for testing, instead of
storing the entire training set of action descriptors, we
can learn a compact function which generates a surface
as a function of the viewpoint. To avoid redundancy, we
will describe our function learning approach with the R
transform surface, since the approach is identical using
MHIs.



EURASIP Journal on Image and Video Processing 9

−3
−2

−1
0

1
2

−2

−1

0

1
−6

−4

−2

0

2

4

6

8

×106

×106

×105

(a)

−4
−2

0
2

4

−2

−1

0

1
−6

−4

−2

0

2

4

6

8

×106

×106

×105

(b)

Figure 10: Two examples showing poor parameter estimates using manifold learning. In (a), two embeddings were computed separately and
mapped to the same coordinate system and on (b), the mixed dataset was passed as input to Isomap. Neither approach recovers the shared
manifold structure of both datasets. (Where color is available, one dataset is shown in blue and the other in red.)
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Figure 11: (a) The change in surface value of a specific location on anR transform surface as function of viewpoint and (b) a cubic B-spline
approximation to learn the function, f〈θ,t〉(φ), which represents the change in a surface at position 〈θ, t〉 as a function of φ.

For a set of R transform surfaces related by a change
in viewpoint, Si, we learn the viewpoint parameter, φi, as
described in Section 4. Then, for each location 〈θ, t〉, we can
plot the value of each descriptor S(θ, t) as function of φi.
Figure 11 shows two such plots for the set of descriptors
depicted in Figure 9. Each plot shows how the descriptor
changes at a given location as a function of φi. Then, for
each location, 〈θ, t〉 ∈ Θ, we can approximate the function,
f〈θ,t〉(φ) using cubic B-splines, in a manner similar to [29].
Figure 11(b) shows an example of the fitted curve.

Constructing an arbitrary R transform surface, Sφ for a
given φ is straightforward:

Sφ(θ, t) = f〈θ,t〉
(
φ
)

(8)

For a new action to be tested, we construct an R
transform surface Sq and use numerical optimization to

estimate the viewpoint parameter, φ̃q:

φ̃q = argmin
φ

∥∥
∥ f
(
φ
)− Sq

∥∥
∥. (9)

The score for matching surface, Sq, to an action given
f (φ) is simply ‖Sq−Sφ‖. In Section 6, to demonstrate action
recognition results, we select the action which returns the
lowest reconstruction error.

5.1. Individual Variations. The viewpoint manifolds,
described so far, are constructed for a single actor performing
a single action.We can extend this representation in a natural
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Figure 12: Mean reconstruction error forR transform surfaces as a
function of the sampling size. The original size of the surface is 180
(degrees resolution in Radon transform) ∗ number of frames in the
video. The three curves represent 45, 90, and 180 (full) samples in
the 1st dimension and the x-axis represents the sampling of the 2nd
dimension. In our experiments we select a 90∗40 representation.

way to account for individual variations in body shape and
how the action is performed by learning the shared
representation of a set of actors. This process requires first
registering the action descriptors for all actors, or learning
the space of combined manifolds.

Due to the variations in the way in which the same
person performs the same action, or more importantly, how
multiple people perform the same action, it is not the case
that different motion descriptors are identical. In the case of
people with significantly different body shapes, the respective
descriptors may appear quite different.

As pointed out in [28], one of the well-known limi-
tations of Isomap and other manifold learning algorithms
is the inability to recover a meaningful low-dimensional
embedding for a mixed dataset, such as a set consisting
of viewpoint-varying motion descriptors obtained from
multiple subjects. The two main reasons are that the inter-
class differences are generally not on the same scale as the
intraclass differences and the high-dimensional structure of
the dataset may vary greatly due to relatively small differences
(visually) in the data points. Figure 10 shows an example
where the embeddings are computed separately and mapped
on the same coordinate frame and an example where the
input consisted of the mixed data.

We address this problem in a manner similar to [28] by
mapping all of the separately computed embeddings onto
a unified coordinate frame to obtain a “mean” manifold.
Using the Coherent Point Drift algorithm [30], we warp each
manifold onto a set of reference points, or more specifically,
one of the computed embeddings, selected arbitrarily. At this
point, it is possible to separate the style variations from the
content (viewpoint) variations, but for the work presented
here, we proceed with the “mean” manifold.

For the reference manifold, f 〈θ,t〉(φ), we calculate the
mean value at each location 〈θ, t〉 and for the set of

manifolds, calculate the function variance:

σ2〈θ,t〉 =
1
n

∑

i

(
Si(θ, t)− f 〈θ,t〉

(
φ
))

(10)

where n is the number of R transform surfaces in the set.
Intuitively, this is a measure of the inter-class variation of
feature point 〈θ, t〉. For action recognition, given a new
example Sq, we modify (9) to include the function variances
and calculate the normalized distance:

φ̃q = argmin
φ

∥
∥
∥∥
∥
f
(
φ
)− Sq
σ2

∥
∥
∥∥
∥. (11)

In the following section, we show how this compact
representation can be used to reconstruct motion descriptors
from arbitrary viewpoints from the original input set, classify
actions, and estimate the camera viewpoint of an action.

6. Results

For the results in this section, we used the Inria XMAS
Motion Acquisition Sequences (IXMAS) dataset [5] of 29
actors performing 12 different actions. (The full dataset
contains more actors and actions, but not all the actors
performed all the actions. So, for the sake of bookkeeping,
we only selected the subset of actors and actions for which
each actor performed each action.) This data was collected
by 5 calibrated, synchronized cameras. To obtain a larger set
of action descriptors from various viewpoints for training,
we animated the visual hull computed from the five cameras
and projected the silhouette onto 64 evenly spaced virtual
cameras located around the vertical axis of the subject. For
each video of an actor performing an action from one of
the 64 virtual viewpoints, we calculated the R transform
surface as described in Section 3. For data storage reasons,
we subsampled each 180∗n fR transform surface (where n f

is the number of frames in the sequence) to 90∗40. Figure 12
shows the plot of the mean reconstruction error as a function
of the sampling size for 30 randomly selected actor/action
pairs. In our testing, we found no improvement in action
recognition or viewpoint estimation beyond a reconstruction
error of .005, so we selected the size 90∗40, which provides
a reasonable trade-off between storage and fidelity to the
original signal.

Following the description in Section 4, we embed the
subsampled descriptors using Isomap (with k = 7 neighbors
as the trusted neighborhood parameter) to learn the view-
point parameter, φi and our set of reconstruction functions.
In this section, we show results for discriminative action
recognition and viewpoint estimation.

6.1. Action Recognition. We constructed R transform sur-
faces for each of the 12 actions for the 64 generated view-
points. For each action, we learned the viewpoint manifold,
and the action functions. To test the discriminative power
of this method, we queried each of the 64∗12 R transform
surfaces with the 12 action classes for each actor. The graphs
in Figure 13 show the results for these experiments. For
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Figure 13: Each graph shows the average accuracy of action recognition experiments using both descriptors (R transform surfaces: left,
blue and MHI: right, red) for 12 different actions using 29 different actors from the IXMAS dataset. For each method, we varied the number
of viewpoints used in training.

each method, we trained the action function using evenly-
spaced views around the vertical axis of the actor. However,
we varied the number of viewpoints we used to construct
the surface that represents the action. This is represented
along the x-axis of each graph. For each graph, the bars
show the average accuracy for each method. In general, the
R transform surface motion descriptor outperformed the
MHI-based approach, except for the walk action.

6.2. Viewpoint Estimation. To test the robustness of our
compact model for viewpoint estimation, we augmented our
action recognition experiments. We learned the viewpoint
parameters for 64 evenly-spaced viewpoints about the ver-
tical axis of the actor and constructed action functions using
subsets of these descriptors for training. We calculated the
difference between the estimated viewpoint φq (using (9))
and the known parameter φ0. Figure 14 shows themean error
results for each action. Most of the results were very accurate
as 1% error roughly corresponds to a rotation of 0.1 radians
from a distance of 3 meters.

7. Summary and Conclusions

In this paper, we addressed the problem of view-invariant
action recognition from a single camera by developing a
manifold learning-based framework to develop a compact
representation of action primitives from a continuous set
of viewpoints. We demonstrated this approach using two
motion descriptors: (1) the well-known motion history
images of temporal templates and (2) one we extended from
a shape descriptor for use in action recognition. Using this
framework, we reported action recognition results that are
comparable to methods which, unlike our method, require
multiple cameras in the testing phase. In addition to action
recognition, this approach also allows for simultaneous
viewpoint estimation.

The work presented in this paper is an early step towards
a learning system for viewpoint- and appearance-invariance
in action recognition. The general direction of this work is
to model how action representations change as a function
of the variations common of video-based human motion
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Figure 14: Each graph shows the average error in our viewpoint estimates when we tested using 64 evenly-spaced viewpoints from rotations
about the vertical axis of an actor. We computed both descriptors (R transform surfaces: left, blue and MHI: right, red) for 12 different
actions using 29 different actors from the IXMAS dataset and used (9) to estimate the viewpoint.. For each method, we varied the number
of viewpoints used for training. (1% error roughly corresponds to a rotation of 0.1 radians from a distance of 3 meters.)

capture.We demonstrated results for the restricted case of 1D
viewpoint changes, but believe that this general approach can
be taken for other types of variations, including more general
motion. In the future, we would like to extend this approach
beyond silhouette-based motions and include appearance
information to avoid the self-occlusion problem inherent to
action silhouettes from certain viewpoints.
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