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Maximum regular wavelet filter banks have received much attention in the literature, and it is a general conception that they enjoy
some type of optimality for image coding purposes. To investigate this claim, this article focuses on one particular biorthogonal
wavelet filter bank, namely, the 2-channel 9/7. As a comparison, we generate all possible 9/7 filter banks with perfect reconstruc-
tion and linear phase while having a different number of zeros at z = —1 for both analysis and synthesis lowpass filters. The best
performance is obtained when the filter bank has 2/2 zeros at z = —1 for the analysis and synthesis lowpass filters, respectively. The
competing wavelet 9/7 filter bank, which has 4/4 zeros at z = —1, is thus judged inferior both in terms of objective error measure-
ments and informal visual inspections. It is further shown that the 9/7 wavelet filter bank can be obtained using gain-optimized
9/7 filter bank.
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1. INTRODUCTION

The transform is one of three major building blocks in wave-
form image compression systems, where quantization and
coding are the two other blocks. It has been stated in the
literature by many researchers that choice of decomposition
transformation is a critical issue, which affects the perfor-
mances of the image compression system.

There are some differences in designing filters in filter
banks compared with wavelet transforms. Wavelet filters are
designed using associated continuous scaling functions and
iterations. The filters in filter banks do not have to be asso-
ciated with a single filter or basis function. They can be de-
signed and optimized in many ways. However, the most com-
monly used image compression systems employ filters with
perfect reconstruction (PR), finite impulse response (FIR),
and linear phase, and they are nonunitary (biorthogonal). It
should be noted that when more constraints are imposed on
a filter bank, fewer variables will be available for optimiza-
tion.

Appropriate filter design criteria adapted to our visual
perception used for image compression still remain an un-

solved issue. For wavelet filters it has been proposed to
have biorthogonal, maximum regularity, minimum shift-
variance, minimum impulse response peak to sidelobe peak
ratio, step response ratio, and so on [1, 2]. The filter bank
designers on the other hand have proposed relaxation of per-
fect reconstruction, shorter synthesis highpass/bandpass fil-
ters, maximum coding gain, “bell-shape” synthesis lowpass
filter, half-whitening property in analysis lowpass filter, and
so on [3-9].

The ideal frequency separation between bands is, from
an implementation point of view, impossible. Furthermore,
subjectively it is also not a good idea. One type of prob-
lem resulting from long impulse responses (this is the con-
sequence of filters with ideal frequency separation) is the so-
called ringing artifact. This is related to Gibb’s phenomenon.
Assume that the signal is to be reconstructed from the low-
pass band only because the signal level would be lower than
the quantization noise level in all other bands. Then edges in
the image would be rendered as edges plus damped “echoes”
of the edges due to the strong variations of the tails in the
impulse response in an ideal filter. In practice, one has to
find a balance between the desirability of high gain and
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other subjectively important measures while using moderate
length filters.

One of the objectives of this paper is to study 2-channel
9/7 biorthogonal filter banks. We derive all possible filter
banks that have PR and linear phase properties and show
that biorthogonal wavelet filters can be obtained by using
appropriate number of zeros on the unit circle, where re-
maining degrees of freedom are used to maximize for sub-
band coding gain. Furthermore, we show that optimal fil-
ters can be obtained by relaxing maximum regularity con-
straint used in the wavelet theory, where the additional de-
grees of freedom can be used for subband coding gain. Both
the wavelet and gain optimized filters are compared in a JPEG
2000 compliant image compression scheme, where objec-
tive error measurements and subjective assessments will be
given.

2. DECOMPOSITION TRANSFORMS

The transform is meant to transfer the signals from one do-
main into another, where signal dependencies (correlations)
are removed. The quantization renders a digital representa-
tion of the signal parameters while allowing a certain signal
degradation, while coding is used for efficient bit representa-
tion.

The design criteria used in the wavelet transforms and
filter banks differ, and the rest of this section is devoted to
this topic.

2.1. Filter banks

Two-channel uniform filter banks are considered in the fol-
lowing. We enforce PR in the following way, where Hip(z)
is a lowpass (LP) filter, and Hup(z) is a highpass (HP) filter.
The filters can be described in polyphase form as

2 2
|z ]| | - e
(1)
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where the polyphase matrix, P(z) and the delay vector, d(z),
are easily identified in this equation [10].

Denoting the polyphase reconstruction filter matrix by
Q(z), a sufficient condition for PR can be expressed as [11]

Q(z) =z *P7!(2), (2)

where k is an integer representing a necessary delay. Given
FIR analysis filters, FIR synthesis filters are obtained by set-
ting all coefficients except one to zero in the polynomial rep-
resenting the determinant of P(z). Denoting the synthesis fil-
ters by Grp(z) and Gpp(z), respectively, the above condition
implies that Gip(z) = Hup(—2) and Gup(z) = —Hyp(—2).
Observe the close connection between the analysis and syn-
thesis filters which simply represents an LP to HP transform
through frequency shifts by 7.

TABLE 1: Possible combinations that give zeros at z = —1.
Number Solution Gain Number Solution  Gain (dB)
of zeros (dB) of zeros
0/0 yes 6.505 4/4 yes 5.916
0/2 yes 6.498 4/6 no —
0/4 yes 6.319 6/0 yes 1.015
0/6 yes 3.371 6/2 yes 0.910
2/0 yes 6.505 6/4 no —
2/2 yes 6.496 6/6 no —
2/4 yes 6.266 8/0 yes —-30.123
2/6 yes 3.070 8/2 no —
4/0 yes 6.505 8/4 no —
4/2 yes 6.305 8/6 no —

The above constraints are the most general to construct
PR system having FIR filters. If linear phase filters are desired,
the system becomes nonunitary (biorthogonal).

2.2. Regularity constraint

In wavelet theory, regularity has been defined as a smooth-
ness measure of a wavelet transform. It has been shown that
a wavelet to have regularity, the analysis and synthesis low-
pass filters Hip(z) and Grp(z) should have a sufficient num-
ber of zeros at z = —1. Consequently, it can be stated that if
Hip(z) has N zeros at z = —1, the corresponding synthesis
highpass filter, Gyp(z) will have N vanishing moments [12].
A study on maximum regularity in orthogonal systems can
be found in [13]. However, our focus in this paper is only for
biorthogonal, linear phase systems.

Let us investigate the importance of zeros at z = —1 for
the analysis and synthesis lowpass filters. A hypothesis is that
in order to alleviate perceptually annoying noise, the DC gain
of the odd and even polyphase lowpass synthesis filter com-
ponents should be equal. This will prevent the generation of
a periodic output from the synthesis filter whenever the in-
put is constant and will also reduce cyclostationary noise in
general. This requirement will force at least one zero to be
exactly at z = —1 for odd length lowpass filters.

Consider the synthesis lowpass filter written in polyphase
form:

Gip(2) = Quo(z2)z™" + Qu1(2%). (3)
A zero at z = —1 is equivalent to
Grp(=1) = =Qoo(1) + Qui (1) = 0, (4)

which implies that Qgo(1) = Qo1 (1). This is exactly the equal-
ity between the DC amplification of the two polyphase com-
ponents.

Now for odd length, lowpass, linear phase FIR filters with
one zero at z = —1, an additional zero would also have to be
placed at the same position. Or in general, zeros at z = —1
must appear in pairs.
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TaBLE 2: Wavelet and gain optimized filters for 4/4 zeros z = —1.
Wavelet filters Gain optimized filters
HLP GLP HLP GLP
0.03750420174433 —0.06509620731678 0.03741392086701 —0.06531200385798
—0.02364485850165 —0.04104029469797 —0.02375429115352 —0.041588241345452

—0.10967708612048
0.37417153290464
0.84540010899851

0.42170166115821
0.79529351434610

—0.1095444797283
0.37423343534046
0.84521940609657

0.42145506934004
0.79546261365501

It should be noted that for even length filters there will
always be at least one zero at z = —1. The DC gain condition
can also be seen to be satisfied by observing that the coef-
ficients of the two polyphase filters are reversed versions of
each other.

Another feature which seems important is that as images
have strong low-frequency components, the analysis high-
pass filter should have at least one zero at z = 1. But this
is equivalent to the previous requirement due to the derived
relationship between analysis and synthesis filters.

The question is now, do we get even better performance
by increasing the multiplicity of these zeros?

To scrutinize this problem, we investigate a 9/7 filter
bank.

2.3. 9/7 Perfect reconstruction linear phase transforms

The analysis 9/7 filter pairs can be written as

Hip(z) = 1+apz '+ a1z 2+ a0z + a3z + apz™>

+az % +apz 7 +278,

Hup(z) = 14+ boz ' +biz 2+ bz 2 + biz 4 + boz > + 27°.
(5)
We assume using optimum bit allocation to quantize the
analysis samples as described in [14]. Then we can write

the subband coding gain relative to pulse code modulation
(PCM) as

031’(\‘% 1

Gspc = % = ——— ENTE (6)

Gropl l_[,':o(hi Rxxhig,' gi)
Here Ry, is the autocorrelation matrix of the input signal
x(n) where the entries are Ry (i, j) = E[x(i)x(j)], and h; and
g; are the ith channel’s analysis and synthesis filter vectors,
respectively. Furthermore, 02 = >|_(1/2)g! gioy, where a7

denotes quantization noise in the ith channel.
There are 20 possible combinations to have zeros at
z = —1, as given in Table 1. (Number of zeros means: num-
ber of zeros at z = —1 for lowpass: analysis/synthesis filters.)
However, as shown in the table, not all possible combinations
of zeros at z = —1 will satisfy the PR and linear phase prop-
erties. This means we have only 14 combinations. In the case
of 4/4 zeros at z = —1, the 9/7 wavelet [12] and gained opti-
mized filter banks coincide, and are, in fact, the only possibil-
ity. The filter coefficients are given in Table 2. The rest of the
filter coefficients can be found by using the symmetric prop-
erty. Note that the synthesis filters have unit gain, that is, their

L, norm is equal to 1, which implies that 67 = (1/2) [oqz1 +aqz2 ]

3. OPTIMIZATION STRATEGIES:
SUBBAND CODING GAIN

After linear phase and PR being imposed on a filter bank, the
remaining degrees of freedom can be used for gain optimiza-
tion (see (6)), or more importantly, to achieve subjectively
good performance. It is obvious that the more degrees of
freedom that can be exploited towards a given optimization
criterion, the better. The correspondence between subjective
criteria and simple mathematical criteria, as used presently,
is rather poor. Typically, filter banks are designed to mini-
mize the mean square error (MSE) after signal decompres-
sion for a given source statistics and quantization scheme.
Furthermore, encapsulating subjective performance criteria
into a set of mathematical equations which can be incorpo-
rated into an overall optimization criterion is warranted.

We choose the cost function to be defined in terms of
coding gain, which is given in (6). The coding gain can be
seen as a measure to assess the data compression ratio [15].
Katto and Yasuda [4] generalized the measure to be used in
biorthogonal, nonuniform (e.g., wavelet tree) filter banks.

In the literature, it has been argued that most natural
images can be approximated as an autoregressive (AR) pro-
cess, where the nearest sample autocorrelation coefficient
p = 0.95. We will also use this model, implying that

1p
Rxx = I:P 1:| (7)

will be used in (6). We used the “Optimization Toolbox” in
Matlab to optimize the cost function.

Table 1 lists the coding gain optimization results for all
possible configurations, of these the following have poor
coding gain (increasing gain order): 8/0, 6/2, 6/0, 2/6, and
0/6. There remain 7 possible zero combinations with gains in
the range 5.92 dB to 6.51 dB, where the 4/4 case (the wavelet
case) is inferior to the others. To make a comparison with the
wavelet transform, we rule out the 0/0, 2/0, and 4/0 cases, as
these lack the necessary regularity constraint. The 0/2 and
2/2 choices seem to be the best among the remaining con-
figurations. In peak-signal-to-noise ratio (PSNR) compar-
isons, the 2/2 case performed slightly better than 0/2 case
[16]. Therefore, we choose the 2/2 configuration.

Figure 1 shows the frequency responses of the gain-
optimized filter bank with 2/2 zeros at z = -1 and
the wavelet filter bank. The passband of the analysis opti-
mized lowpass filter is slightly elevated, which is referred
to as the half-whitening property in [7, 15]. Only a crude



4. RESULTS

Gray scale test images such as Bike, Cafe, Target, and Woman
were chosen from the JPEG 2000 test set (JPEG 2000 com-
pression test image CDROM ISO/IEC JTC 1/SC 29/WG1)
where a JPEG 2000 complaint image coder was employed in
our experiment [17]. The bitrates used were 0.0625, 0.125,
0.25, and 0.5 bits/pixel (bpp). Furthermore, we have chosen
to use the same objective error criteria used in the evalu-
ation of the candidate image compression systems submit-
ted to the JPEG 2000 comittee in 1997 in order to compare
the competing filter banks, where only the peak-signal-to-
noise ratio (PSNR) is presented in Table 4. The gain opti-
mized filter bank performs better than the wavelet filter bank
for image Target. For all other images the wavelet and gain
optimized filter banks perform equally well. Comprehensive
coding results for a number of filter banks and different fre-
quency partitions can be found in [18, 19]. So the question
now is whether the decoded images of both filter banks look
the same.

During the evaluation of the JPEG 2000 candidates, an
extensive subjective evaluation was performed. Both objec-

4 EURASIP Journal on Image and Video Processing
_______ TasLE 3: The gain optimized 9/7 filter bank (the 2/2 zerosat z = —1
--------- case) analysis and synthesis lowpass filter coefficients.
hup(1:5)" gir(1:4)"
Level-1
—4.4985547417617e-02 7.6313567129747e-02
—§ ) 2.6332850768416e-02 4.4671097501108e-02
% w0}t /S ‘-\‘ 1.0569163480620e-01 —4.2815691469541e-01
g Ill : ‘1‘ —3.8160459560842e-01 —7.9302889013354e-01
/ i —8.3195566445719¢-01
~150 -;' v Level-2
i Ef}\\. 6.0365140306837e-02 —9.3024425657936e-02
- i —3.4502630852655¢-02 ~5.3169551208556¢-02
200 = ol 0 03 o = 8.5 —9.6343466902220e-02 —4.3174350950173-01
Frequency 4.0354000123490e-01 7.8377727010471e-01
8.1003139395526e-01
FI1GURE 1: Frequncy response of the analysis filters. Gain optimized Level-3
2/2 zeros at z = —1 (dashed) and wavelet 4/4 zeros at z = —1 (dot-
ted). 5.5206559091025¢-02 ~9.1725776573471¢-02
—2.7922407706617e-02 —4.6393120181020e-02
—1.0441747150424e-01 4.3633696256551e-01
approximation to the half—Whitening property of the Signal 3.9065004128636e-01 7.8200861234611e-01
spectrum can be obtaiped wi.th .short length FIR filters. 3.2387709198593¢-01
Table 3 lists the gain optimized 2/2 case of the 9/7 filter Loveld
coefficients for 6 levels. Only the first 5 and 4 filter coefficients
of the analysis lowpass (hp) and synthesis lowpass (gip) are —:0936329872229¢-02 8.8243072490171e-02
listed, respectively. By using the symmetric and modulation 2.4607113245270e-02 4.2629833820440e-02
properties, highpass filter coefficients can be found. The filter 1.0875991200411e-01 —4.3726447799116¢-01
coefficients have different values in each level indicating that —3.8275133600598e-01 ~7.8330247864284¢-01
the power spectrum in each level is different. —8.3193560978519¢-01
In the case of 4/4 zeros at z = —1, the wavelet 9/7 fil- Level-5
‘Fer ba.nk [12] and gair.1 optimiz.ed 9/.7 filter bank ha.ve almost —4.0284391511432¢-02 7 1303004882139¢-02
‘d‘:_mlczl. filter CoefﬁC‘l‘l"ms as gva_ en szabl; 2. Tht‘;'l‘r zero io' 2.3137486606188e-02 4.0953139877346¢-02
cation diagrams are shown in Figure 2, whereas the zero lo-
cation diagrams for 2/2 case of t}%e 9/7 filter bank are shown 1.0976902435909¢-01 ~4.2804933628869¢-01
in Figure 3. —3.7352651375374e-01 —7.9539894256780e-01
—8.3974731999042e-01
Level-6

3.2624711093588e-02
3.1984946433911e-02
—4.1036902770132e-01
—8.1945852608329¢-01

—1.8269742086611e-02
1.7911475762202e-02
1.1753257439016e-01

—3.4882313876892e-01

—8.6034899062052e-01

tive and subjective evaluations were used to select the system
for further development. We do not have resources to per-
form a comprehensive subjective test. Let us rather inspect
some images for annoying artifacts. If we compare the gain
optimized 9/7 filter bank (2/2 zeros at z = —1) and the 9/7
wavelet filter bank (4/4 zeros at z = —1), the ringing artifact
becomes severe in the 4/4 case. To explain this, we examine
the synthesis lowpass filter’s unit sample response. For sim-
plicity, the unit sample response of a 3-level decomposition
is shown in Figure 4. The unit sample responses of both 2/2
and 4/4 cases are obtained by convolving the unit sample re-
sponses of each level. For comparison purposes both filters
are restricted to have unit /, norm. In Figure 4, we see that
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TaBLE 4: PSNR results: 9/7 wavelet and gain optimized filter banks.

Image Filter bank Wavelet
0.0625 0.125 0.25 0.5 Avg. 0.0625 0.125 0.25 0.50 Avg.
Bike 2291 25.51 28.68 32.69 27.45 2291 25.51 28.68 32.71 27.45
Cafe 19.00 20.63 23.05 26.53 22.30 19.02 20.66 23.08 26.58 22.34
Target 17.31 20.39 24.42 31.10 23.31 17.13 20.06 24.18 31.01 23.10
Woman 25.45 27.21 29.70 33.18 28.89 25.38 27.19 29.67 33.15 28.85
)T : : : : : : : : :
° 15} 1
1.5
I 1 i
£ 05 g 05p 1
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()
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FIGURE 2: 4/4 zeros at z = —1 of the gain optimized and also wavelet 9/7 filter bank. (a) Analysis and (b) synthesis lowpass filters.

the magnitude of the side-lobes (negative unit sample values)
of the 4/4 case is much larger than in the 2/2 case, and this
leads to severe ringing at low-bit rates. Furthermore, severe
checker board and waveform types of artifacts were observed
for the cases of 0/0, 2/0, and 4/0 zeros at z = —1 [20]. The
gain optimized 2/2 zeros at z = —1 had less ringing around
sharp edges than the wavelet filter bank (see image target
in Figure 5). Smooth regions and textures are better recon-
structed by the gain optimized filter bank than the wavelet
filter bank (see image cafe in Figure 6).

So far we have seen that the gain optimized and wavelet
filter banks had similar objective measurements whereas
there are some differences in their visual appearances. Let us
see whether we can interpret our finding by inspecting the
power spectra of the images. The calculated p in AR(1) model
for the images, Bike, Cafe, Target, and Woman, are 0.97, 0.92,
0.76, and 0.97, respectively. Furthermore, Woman and Tar-
get have the larger power spectral variations. The larger the
power spectral variations are, the higher the spectral flat-
ness measure becomes [15]. The spectral flatness measure is
used in the bit allocation scheme. This may be a reason that
Woman and Target have slightly better PSNR measurements
as given in Table 4.

The Bike and Woman images are best matched to the sta-
tistical model used in the optimization. For other images
there is a discrepancy between the selected model and the

calculated power spectrum of the image. Gain optimization
based on the real power spectrum of the image may increase
the performances of the filter bank. In this case, the opti-
mized synthesis filter coefficients have to be sent as a side in-
formation to the decoder. It may be also interesting to study
turther whether subjective error criteria can be formulated as
a cost function along with the subband coding gain given in
(6) to obtain optimal filters.

5. CONCLUSIONS

All possible combinations of having zeros at z = —1 for anal-
ysis and synthesis lowpass filters for linear phase, perfect re-
construction, finite impulse response 9/7 filter bank were de-
rived. The popular 9/7 wavelet filter bank, which has 4/4 ze-
ros at z = —1, is a special case and can be derived from the
gain optimized 9/7 filter bank. It was further shown that the
9/7 filter bank, which had 2/2 zeros at z = —1, had higher
theoretical coding gain, less ringing artifact, and slightly bet-
ter objective measurements than 9/7 wavelet filter bank. The
maximum regularity constraint in wavelets can be relaxed
and therefore other optimizing criteria may be considered.
Based on our experiments the following low-complexity
filter bank model can be suggested: a moderate number of
levels, but high enough to get a fairly flat passband in the
lowpass band. Use 2/2 zeros at z = —1 with optimized
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FIGURE 3: 2/2 zeros at z = —1 of the gain optimized 9/7 filter bank. (a) Analysis and (b) synthesis lowpass filters.
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FIGURE 4: The 9/7 product unit sample response of the synthesis lowpass filter (43 taps). (a) Gain optimized and (b) wavelet [12].
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FIGURE 5: Lossy reconstruction of the Target image at bit rate of 0.25 bpp. Depicted region (200 : 512, 200 : 512). Result obtained during (a)
gain optimized 2/2 zeros z = —1 filter bank and (b) 4/4 wavelet transform [12].
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FIGURE 6: Lossy reconstruction of the Cafe image at bit rate of 0.125 bpp. Depicted region (420 : 820, 100 : 400). Result obtained during (a)
gain optimized 2/2 zeros z = —1 filter bank and (b) 4/4 wavelet transform [12].

coefficients for each image. In practice, develop a small code-
book of typical filter banks from which close to optimal fil-
ters can be selected for each image. Transmit the codebook
index as side information. Based on this and the bit rate, the
appropriate inverse filter including Wiener filters can be de-
rived in the receiver. This may eliminate the observed mis-
match between calculated power spectra of the images and
AR(1) model.
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