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Human tracking is a popular research topic in computer vision. However, occlusion problem often complicates the tracking pro-
cess. This paper presents the so-called multiview-based cooperative tracking of multiple human objects based on the homographic
relation between different views. This cooperative tracking applies two hidden Markov processes (tracking and occlusion pro-
cesses) for each target in each view. The tracking process locates the moving target in each view, whereas the occlusion process
represents the possible visibility of the specific target in that designated view. Based on the occlusion process, the cooperative
tracking process may reallocate tracking resources for different trackers in different views. Experimental results show the efficiency

of the proposed method.
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1. INTRODUCTION

Currently, multiple-view multiple-object tracking has be-
come an essential technology for many applications such as
video surveillance system. Modern video-based surveillance
systems [1] employ real-time image analysis techniques for
the target tracking and identification. The major issue of tar-
get tracking is to identify the multiple moving objects. How-
ever, occlusions among the objects will complicate the track-
ing process and make it difficult for the system to identify the
object after occlusion. This paper proposes a novel method
for multiple human tracking in multiple views.

Recently, researchers have shown a great interest in us-
ing particle filters for visual tracking [2-5]. For analyzing
the occlusion between targets, Wu et al. [6] propose mod-
eling occlusion relations as an extra hidden process in a dy-
namic Bayesian network. A hidden variable was used to in-
dicate the three possible relations between two moving ob-
jects. The transition process is described with a three-state fi-
nite state machine. Hu et al. [7] extend the framework to hu-
man tracking. Analyzing the depth order around occlusions
is indeed helpful to maintain tracking. However, as the num-
ber of targets increases, occlusion relations among targets

get more complicated. Another problem in object tracking is
that the appearance of object changes quite often. Zhou et al.
[8] present an approach incorporating appearance-adaptive
models into a particle filter to realize robust visual tracking.

Kang et al. [9] use time weighted color information
(or temporal color) for multiple people tracking. Recently,
graph-based multiple hypothesis tracking (MHT) algo-
rithms have been proposed [10-12] to track multiple targets.
However, the hypothesis tree grows exponentially as more
measurements are received. Khan et al. [13] replace the tradi-
tional sampling step in the particle filter with a novel Markov
chain Monte Carlo (MCMC) sampling step to obtain an ef-
ficient multitarget tracking. These methods try to limit the
growth via a series of clustering and pruning operations.
However, the major limiting factor is that these algorithms
lag noticeably in a crowded scene because of high computa-
tion complexity.

Because the single viewpoint loses the depth information,
there are too many hidden regions when targets present com-
plicated depth order. Matshuyama and Ukaita [14] present
a cooperative tracking system which consists of a group of
active vision agents. Each agent may include more than one
camera and is dynamically established to handle one single
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FIGURE 1: System flow diagram.

target. Utsumi et al. [15] propose a multiview tracking al-
gorithm using synchronous cameras to locate the objects. To
detect human rotation angles and body sides, they project 3D
object model onto every 2D image plane to choose a proper
view.

Chang and Gong [16] use Bayesian modality function
to track people by using multiple cameras to overcome the
occlusion problem. Otsuka and Mukawa [17] introduce a
dual-loop particle filter operating in multicamera environ-
ments. For eliminating the phantom cells produced in back-
projection, a hypothesis support ratio is added to estimate
the most possible global structure. Canton-Ferrer et al. [18]
present a Bayesian approach to find the correspondence
of moving objects in multicamera environments. A simple
point-based feature of each foreground region is extracted
which is used to establish the correspondence. Khan and
Shah [19] propose a method to find the limits of field of
view (FOV) of each camera as visible in the other camera.
The FOV can be used to recover the homograph between the
views. Snidaro and Foresti [20] propose an approach to au-
tomatically evaluate and select the sensors of a multisensor
system by measuring their efficiency in detecting the target.
Lopez et al. [21] propose a 3D tracking method using mul-
tiple particle filters and model the interaction among them
through a 3D blocking scheme.

This paper presents the so-called multiview-based coop-
erative tracking system by using particle filter. Different from
other multiview-based works on multiple targets tracking
[14-21], this paper aims at solving the occlusion problem
by combining the multiple camera inputs. This approach is
based on the concepts of data sharing and resource sharing of
the tracking processes for all the targets. Since view-to-view
mapping is preconstructed, the precise trajectory of each tar-
get can be obtained based on the reliable observations in
which the designated target is more visible.

This paper applies the particle filtering to track each ob-
ject. In the multiview cooperative tracking system, the track-
ing status of each target in each view is described by a hid-
den Markov process, the occlusion status of each target is also

modeled by another hidden Markov process, and these two
processes are related. Different from single view tracking [5—
7], this approach solves the complex occlusion problem by
allowing different trackers to share their common computa-
tion resources and sensor data. For each tracking process, the
total allocated computation resources are always the same;
that is, the number of sampled particles used for tracking is
fixed. The cooperative tracking allocates fewer resources for
the tracking process in unreliable views, and distributes more
resources to track the object in the reliable view. In compari-
son with the other multiview noncooperative tracking meth-
ods [14-21], our method can track the objects more effec-
tively.

2. SYSTEM OVERVIEW

In surveillance videos, the background scenery is assumed
to be stationary and homogeneous. The observations of the
same target are supposed to be similar. Moreover, every per-
son can be identified by some visual features different from
the background. However, when multiple objects approach
each other, the tracking process of one object will interfere
with the process of the other one. For particle-filter-based
tracking algorithms, the impact is that some of the particles
will be located on the other target and the biased expectation
of the hypothesis will be generated. Besides, the interference
among different tracking processes may also occur because
of the occlusion or shadow. In the crowded scene, it becomes
significant. To overcome these difficulties, we introduce an-
other hidden Markov process to model the occlusion status
among different tracking processes.

The overall system is demonstrated in the flow diagram
shown in Figure 1. For each object in each view, there is a cor-
responding tracking process. Between two tracking processes
in the same view, there is an occlusion process that provides
the occlusion status between these two moving objects. For
each object appearing in different views, we apply the di-
rect linear transformation (DLT) homograph to determine
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whether the previously occluded object has reappeared and
will be allocated with more tracking resources.

2.1. Overview of particle filter

The basic idea of particle filtering is to estimate how a prob-
ability density propagates. The object to be tracked can be
modeled according to its visual feature. Based on this prob-
abilistic model, the presence of the object in a scene can be
described as a probability density function. In time series, the
propagation of density function is a stochastic process X,. Es-
timating the state propagation of X, means locating the ob-
ject frame by frame.

In particle filtering, we assume that {X,X,,..., X7} isa
sequence of hidden Markov processes; the present state X, is
only related to the preceding state X,_;. Mutually indepen-
dent observations {Zj,...,Z7} are introduced, and condi-
tional state density p(X, | Z;) can be calculated as

P, 120 = p(Z 1 X) [ p(X, 1%, 1) p(Xey | Zer)dX, o,
(1)

where p(X,_, | Zi_1) is the posterior from the previous time
step, and p(Z; | X,) is the observation likelihood. The dy-
namics p(X, | X,_,) can be implemented as a first-order pro-
cess X, = AX,_; +w;, where w ; is a Gaussian noise. In our
experiments, A is defined as a constant value that represents
targets moving at a constant velocity.

The distribution p(X,) is represented by a weighted sam-
ple set {(s1,71),...,(Sn, 7mx)} which represents the so-called
“particles”. The weighting factor 7, is proportional to p(Z; |
X, = s,), and the estimated state of object can be determined
from the expectation of the sample set {s,} as &, = >_, 7,s,..
The particle filter iteratively resamples X, and reweights the
samples.

To construct the observation model, feature selection is
a crucial issue. A proper feature should have high discrim-
inating power to maintain the identities of objects and low
complexity in extracting the feature information. For vision-
based human tracking, color histogram analysis has been
widely used [3, 4]. Here, we adopt a hue-saturation (HS)
color histogram model and uniformly quantize H and S into
10 levels. So a color region in an image can be given a sta-
tistical description by 10 x 10 bins on the HS plane. Besides,
for those points with R = G = B, an additional bin is used to
count them, because we cannot evaluate their hue informa-
tion. Thus, the resulting complete histogram is composed of
10 X 10+ 1 = 101 bins.

In single object tracking, the observation of every particle
sample is in a rectangular area. Each rectangle can be seen asa
candidate region of the human target, and each sample s rep-
resents a four-dimension entity, that is, s = {(x, ), (h, 1)},
where (x, y) represents the bottom center of the rectangle,
defining the location of a person, and (h,r) represents the
height and the aspect ratio. Evaluating the similarities be-
tween these hypothesis boxes and the target model indicates
the weights of these particles.

The measure between two color distributions p(u) and
q(u) is the Bhattacharyya coefficient which is defined as

(a) (b)

FIGURrE 2: Both of the two candidate regions (yellow rectangles)
highly match the target model.

(®)

FiGure 3: Different views provide different observations of the same
object.

plp.ql = X.\/p®q®. The larger p indicates higher simi-

larity of the two color histograms and this hypothetical re-
gion is more probable to be the target. Then, we define the
distance between two distributions as d = /1 — p[p, q]. Dis-
similar distributions result in a larger d. The sample weight
is proportional to the observation likelihood which is written
as

22
ed/Za

= NrTa (2)

The set of particles used for human tracking represents
the enclosing blocks of the human target with various posi-
tions and sizes. Since more particles provide more measure-
ments, constructing a very large particle set will support all
hypotheses. To reduce the number of particles (less computa-
tion complexity) and increase the tracking accuracy, we have
two assumptions. First, we assume the motion smoothness
constraint. For human object tracking, the states of targets
are not supposed to be changing rapidly. Under this assump-
tion, the sampling set only has to support a small region
around the previous state so that a reduced number of par-
ticle samples are sufficient for tracking. Second, we impose a
specific range constraint on the aspect ratio of the tracking
object block to avoid some ambiguities. For instance, there
is an ambiguous match between the target color model and
either one of the two hypotheses, that is, the two rectangu-
lar boxes shown in Figures 2(a) and 2(b). Here, we apply a
range constraint on the aspect ratio of the box to avoid this
problem. This constraint on aspect ratio is useful for multi-
ple human objects tracking, because they may dress in simi-
lar colors.
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FIGURE 4: The state transition model.

In single view object tracking, if the color models of the
two human objects are very similar, then the two tracking
processes may fail when the two objects approach each other
and make occlusion. However, in multiple view tracking, we
do not need this restriction since the occluded object disap-
pears in one view but appears in the other view. The tracking
process in the other view may provide adequate tracking re-
sults.

Here, we allow a sampling set with variable size. Fox [22]
proposed a sampling technique based on Kullback-Leibler
distance (KLD) to choose a large number of samples if the
uncertainty is high. Otherwise, it chooses a small number of
samples. Instead, we do not insist on choosing more samples
for the tracker in the occluded view, but on allowing more
samples for the tracker in the visible view. With more reliable
observation, the tracker will generate more accurate estima-
tion of the target. So, the number of particles for the process

in the occluded view diminishes, whereas the number of par-
ticles for the process in the visible view increases.

2.2. Homographic relation between two views

The purpose of applying homography for tracking is based
on the assumption that each human object has its footprint
on the ground. The two corresponding footprints (i.e., the
bottom center of the rectangles) of the same object in two dif-
ferent views can be used to locate the object. To develop the
homography between different views, we introduce a mech-
anism to correlate one image plane with the others by us-
ing the direct linear transformation (DLT) algorithm [23].
We assume that a set of points {x;} and a corresponding set
of points {x;} are located on two different images. The DLT
method uses a set of four pairs of 2D corresponding points
to estimate a 3 X 3 matrix H such that Hx; = x/.
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FiGure 5: The flow diagram of tracking a target j in view i.

This basic DLT algorithm is not invariant to different
choices of the image coordinates [23]. More than four corre-
spondences do not guarantee an acceptable precision. Here,
we normalize the data before performing the basic DLT algo-
rithm, and then we obtain the homography H after denor-
malization. The normalization undoes the effect of coordi-
nate changes and improves the accuracy of the basic DLT.

First, each point x; is normalized to ensure unit-scaled
homogeneous coordinate. The origin of the coordinates is
then moved to the centroid of the set of points which are
then normalized. All of the above procedures can be carried
out by a transformation T, written as X = Tx. We also com-
pute a transformation T’ for the points in the second image
which map points X’ to X'. Then, we apply DLT algorithm
to the two sets of points X and X' to determine homogra-
phy H and then obtain X = U,x?)t. In our experiments,
we find that the mapping generated by the normalized DLT
illustrates better results.

3. COOPERATIVE TRACKING OF MULTIPLE
OBJECTS IN MULTIPLE VIEWS

The benefit of multiple view tracking is that different obser-
vations of the same target can be found in different views.
In cooperative tracking, we apply a homography transforma-
tion H between different processes in different views to reveal
the occlusion information (occluded or not) of the nearby
targets. The target occluded in one view may be visible in the
other view. Therefore, the tracking process for the target in

(b)

(d)

FIGURE 6: Sequence no. 1 shows the tracking of 2 persons in 2 views
with 40 particles per tracker. (a) and (b) show the tracking results
(yellow blocks) in two individual views by using regular PE. (c) and
(d) show the results (yellow blocks) of our method. The blue block
indicates the estimated %—)t, i=1 or 2, which is obtained from the

other view, that is, X, = H(k, i)-gﬂf’t, k,i=1or2.

the occluded view may be assisted by another process in the
visible view.

Suppose we want to monitor # targets at the same time,
and the state of the jth target at time ¢ is defined as X;, =
X, (H, R)]-)t}, where X; ; indicates the position of the sam-
ple of X;, and (H,R);; denotes the dimension of the sam-
ple. Obviously, our goal is to estimate the states of all targets,
X, = X, X5..., X, }. The tracking process is treated as
the density propagation from p(X,_; | Z;—;) to p(X; | Z;)
governed by the dynamic model p(X, | X,_,) and the obser-
vation model p(Z, | X,) as

P(X,120) = p(Zi 1X) [ p(X, 1%, 1)p(X, 1| Zim1)dX, .
(3)
The motion activities of the n targets are independent,

and there are n independent processes, that is, X, = X
j = 1,...,n, developed for tracking. For target j, we may
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also decompose the process of X, into m view-dependent
processes distributed in m views (i.e., X;, = U,-X},t). The
tracking can be modified as the density propagation from
p(Xj,1 | Ziy) to p(X), | Z;), which is governed by the dy-
namic model p(xj, | xj,xj, ;) and the observation likeli-
hood function p(Z, | x],) We define x 7” = {xj - (h, r)it}
where x + indicates the location of the random sample, and

(h,r)! it denotes the dimension of the sample. If there is no
occlusion between objects in view i, then the tracking pro-
cesses applied for each target are independent, that is, p(X, |
Xi) = IipX;, | Xj;—1). In multiview environment,
we apply the particle filtering to calculate posterior density
p(X, | Z;) based on the observations Z; = (zh,72,...,2m
in m views. For each different observation of the same object,
we have different processes The processes of the same object
in different views (i.e., X, and xj ,) are related. Thus, we may
manipulate these processes and observations for robust ob-
ject tracking.

The view-dependent occlusion of the targets complicates
the tracking processes. Since occlusion between objects may
occur, we develop a sequence of hidden Markov processes to
model the appearance of each object tracked in each view
based on the occlusion status of object in the previous state.
During the multiview tracking process, these hidden pro-
cesses help the system relocate the tracking resources to trace
the same object from unreliable views to reliable views. For
the same object in all views, the outcomes of the correspond-
ing tracking processes are combined to locate the individual
object more precisely.

By considering the occlusion variable €, the tracking
process can be modified as the density propagation from
pPXi1, Qi1 | Zi—y) to p(X,, Q¢ | Zy) governed by the dy-
namic model p(X, | X, ;) and the observation model p(Z; |
X, Q) as

P(X0 00 12) = p(Z, 1%, 00) [ p(X,1X,.)

X P(Qz | Qt—l)p(Xpl:Qt—l | Zt—l)dthp
(4)

where X, = (J;X Xin X UiX;',t’ and p(X; | X;-;) =
H]P(X o XN 1)- For each view 1, there is a hidden oc-
clusion variable Qﬁ, and Q; = UiQﬁ, where i = 1,...,m.
Occlusion occurs due to the unpredictable motion activi-
ties of the nearby objects so that the occlusion processes for
different targets are independent, that is, p(Q; | Qi ) =
[1; p(wjt | wjt 1)- The expectation of the hidden occlusion
variable E(wj,) indicates the visibility of target j in view i at
time £. As shown in Figure 3, the more reliable view for ob-
serving person A is view a; however, for person B, view b is
better.

For target j in specific view i, the tracking process can be
described as

Pl 1 2) =p (21 1 5 ) [ p(xi 10)

Wijr-1 ‘Zg—l) dX;,t—l-
(5)

Py i
xp (wj,t | “’j,t—1>P (Xj,t—l)

The overall tracking process model is shown in Figure 4.
Tracking object j in View i is modeled as a sequence of hid-
den process {p(x]t | x 7” 1)}, another sequence of hidden
process p(w o ]J—l)’ and a sequence of observation likeli-
hood p(Z | x] »wj). The hidden random variable wj; con-
ta1n1ng the occlusion information of object j is determined by

;and xj ;- For each variable x] ;» there are random sam-
ples {s, | n=1,. NSl +}> and the weight of each sample is
denoted as n (n) Wthh is proportional to the observation
likelihood deﬁned in (2), that is, ]t(n) = p(Z, \ﬂt, ])t).

Here, we assume that the hidden processes of gj)t and
wj, are related. If the samples of xj, and x} , are very simi-
lar, then there is a great probability of occlusion. For two ob-

jects j and k in view i, if [Znn]’:,t(n)/NSﬂ < [Z,,ﬂ,i,t(n)/NS};]
and Ix},t — X ;| < Ougis (Bais is determined by h and r as
Odis o< f(h,1); here we let 84is = 0.5 hr), then object j is oc-
cluded by object k, and the likelihood of w}, will decrease.
For every two samples s,; and sy of xj, and x; ,, we may
find the normalized overlapped area of rectangles (A, r)j»,t and

(h, r)};,t and determine the likelihood of w;,t as
Ip (w;,r | X},t’X;c,t)P (X}t’ X;c,t) dx}),d&;{,t

plai) - Sop(a) ’

where g}'{,t indicates the state of the closest neighbor
k, the nth sample of p(a)§’t |
|7T]it(n)
of p(fj 1»X;,) is determined by the normalized overlapped

(6)

X?,t,gi’t) is defined as
- ”li,r(”)\/ maX(ﬂ;,t(n),ﬂ,i,t(n)), and the nth sample

area of rectangles (h, r);)t and (h, r)};)t.

For any two samples s,;(n) and sxk(n) of xl ¢ and x;
we have the corresponding weight factors 7; t(n) and T[k (n),
as well as a correspondlng sample s,;(n) for wj defined as
Swj(n f(n] ¢(n),m (n)). After estimating all the samples
in view i, we have a density function of p(w J,t) for each target
J. By registering all density functions, p(wj,), we normalize
the density function and discretize the variable }, into k dif-
ferent levels. The mean value E(w;’t) = w})t p(w}’[) indicates
the overall visibility of object j in view i. For smaller E(wj ),
the number of particle samples required for the tracking pro-
cess p(g},t | g},t_l) decreases.

For each object j, we have two hidden variables x;; and
wj in different views i. H(v, ) is the homography matrix
relating the location of xj, (xj, in view v) to the location of

Xj, (x ¢ in view 7). Based on different w’ ,, we may integrate

A
different XN in multiple views into the canonical (overhead)
view v as

Y Z:ilE(a);t) -H(v, i)'&j‘,t
Xj,t = N > (7)
Z?ilE(w;‘,t)

where E (wj-)t) indicates the overall average visibility of target
object j in view i. Since the tracking process of object j in
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F1eure 7: Tracking 2 similar persons in 2 views with 100 particles per tracker. (a) and (b) show the results (yellow blocks) of tracking in two
views using regular PE. (c) and (d) show the results (yellow blocks) of our method. The blue block indicates the estimated 2},“ i=1or2,

which is obtained from the other view, that is, ﬁ;t = H(k,i)- gﬁ)t, k,i=1 or 2.

(®)

FiGure 8: Tracking 3 persons dressed in similar color in two views
with 100 particles per tracker. One person occludes the other
two at the same time. The blue block indicates the estimated

~i

X;,, i=1 or 2, which is obtained from the other view, that is, X, =

H(k,i)-x5,, k,i=1or 2.

view i is not reliable, the number of particles in the propa-
gation decreases. For each target, the total number of sam-
ples needed for different tracking processes in various views
is fixed. The target in more reliable view will be tracked with
more particle samples, whereas the target in less reliable view
will be tracked with fewer samples.

In the unreliable view, as the target is partially occluded,
the tracker is allocated with fewer particle samples. Once the
target is completely occluded, the corresponding tracker fails
and loses tracking. At any time instance, the tracking pro-
cess can be in either an active state or a dormant state. In the
active state, the tracking process is successful. Once the ob-

FIGURE 9: Three-view cooperative tracking in video sequence no. 5.

The blue block indicates the estimated 2;’“ i=1, 2, or 3, which is

obtained from the mapping of the most visible view, that is, g;[ =
H(k,i)-x5,, k,i=1, 2, or 3.

ject is completely occluded, that is, E(wj-’t) < BOoccluded (1-€.,
Ooccluded = 0.5), the tracking process enters the dormant state.
The dormant tracking process will have fewer computing re-
sources to do the tracking. The resampling process of gj-’t is
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FiGure 10: (a) Tracking 3 objects with two-view cooperatlve trackmg in Vldeo sequence no. 6. The blue block indicates the estimated

Ai
X

X0 i=1 or 2, which is obtained from the other view, that is, X

= H(k,i)-x 7] i k,i =1 or 2. (b) Tracking 3 objects with three cameras in

video sequence no-. 6. The blue block indicates the estimated X gﬂ, i=1,2, or 3, which is obtained from the mapping of the most visible view,

thatlsx . = H(k,i)-x},, k,i=1,2, or 3.

Jf’

based on the samples of the other processes by using the fol-
lowing equation:
S ~E<w’? ) “H(v,i)-x*
i k=1,k#i Jst >Ryt
Xt = " k
Zk=1,k¢iE<wj,t)
After resampling, similar to the active process, the

dormant process continues doing the density propagation
p(xj; | xj,_;) and calculating E(wj ;). The dormant tracking

(8)

process has very limited tracking resource, that is, NS;-J =
Niorman, to do the predictipn, where Ngorman 15 defined as
Ndorman = (Ntotal/m)-E(w},,). The rest of the tracking re-

sources, NS?J = (Niotal = Ndorman)/(m — 1), will be assigned
to the other active processes of the object k (k # i). With the
information provided by the other tracking processes, it can
be woken up later and enters the active state once the tar-
get becomes partially visible, that s, E(wj,t) > Oocduded. Usu-
ally, the lost target will reappear at a very different place from
where it disappeared. Compared with a regular noncooper-
ative tracking, our method will continue tracking the object
after occlusion successfully.

4. IMPLEMENTATION

The state transition model is shown in Figure 4 in which the
number of particle samples is determined by the likelihood of

FIGURE 11: Tracking 3 objects with three cameras in video sequence
no. 7. The different color block indicates different tracked object.

the hidden state ' .+ The tracking processes monitoring the
same target in different views share a fixed number of particle
samples. The number of samples in each view is defined as

NS, oc ( Wg- 1) ZP( Wit 1)_1

DNSi, =N, (9)
i
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FIGURE 12: Tracking 3 objects with three cameras in video sequence
no. 8. The different color block indicates the different tracked ob-
ject.

where N is the total number of random samples assigned to
each target, and p(w}:)t) is determined by the interaction of
object j and its nearest neighbors.

The cumulated sample weight also represents the confi-
dence of tracking result. In each tracker, we define the nor-
malized cumulated weight as TT;, = 27} (s)/N, where N
is the total number of samples. Then (9) is rewritten as

i
-1

. IT )
NS}), o (XZT +ﬂE<w})t,1), o +ﬁ =1. (10)
it tt=1

Initially, we define & = 8 = 0.5, then 3 is adjusted based on the
variance of {w; }. The target with low visibility will be tracked
with less number of samples. Once the occlusion occurs, we
increase the weight f3 for moreinfluence of {wj.} on the num-
ber of samples, that is, NS;-),.

The flow diagram of the cooperative target tracking algo-
rithm is shown in Figure 5 and summarized as follows.

Cooperative target tracking algorithm

Definitions: (a) {gﬁ-’t} and {w;-’t} are two sequences of hid-
den variables modeling the object tracking and the occlusion
state of object j in view i. (b) N is the number of samples
for each target. (c) NSj, is the number of current samples
for tracking target j in view i. (d) {sj-,t} = {xj-’t, (h, r)?),} is
the sample of the set of X;,r (e) p(u) is the object model. (f)

q(u) is the observation model of the sample s§,t. (g) n]’:,t is the
sample weights defined in (2).

Inputs: the object model p;(u) for each target j, the sample set
{s?)t,l n) In=1,..., NSj,t_l} of gi,,l, and the probability
ﬂ]l:,t_l (n) of each sample.

Output: generate {X;j ;, 7}, wj ,} from {Xj,_;, 7}y, @j,_1}.

(1) Resample {s',_,} with NS’ ,_; samples and probability
s s
{1}

(a) Calculate the normalized cumulative probabili-
ties as

Chq(n) =chyy(n=1)+75,(n),
y cii1(n) (11)
Ciyo1(n) = 7——=—.
Cii-1 (st,t—l)

(b) Selectively resample {sﬁ)t_ 1} by randomly draw-
ing m samples of which the cumulative proba-
bilities {c},_;(n), n = 1,...,m} are larger than
{c}ft_l(n), n = 1,...,NS;~J_1 — m}, and extend
the m samples to NS} ,_; samples as {s,_;}.

(2) Propagate the new sample set {s;’;t} based on the
density propagation p(X;,t | x;i,t_l) governed by the
random walk as s;'-,t(n) = S}ft—l(n) + wi(n), n =
L..., NS;-J_I, where w ((n) is a multivariate Gaussian
random variable.

(3) Correction: calculate the observation of each sample as
q(u) and update the weight of each particle of the sam-
ple set {s}-,t} as ﬂ})t(l’l) = p(Z; | x},, = s’j,t(n)) using
(2).

(4) Estimate the mean state of the sample set {sit} as
E(s};) = 2mj(n)s; (n).

(5) Canonical view estimation: calculate g},t by using (7).

cclusion estimation: calculate p(w',) usin an

(6) Occlusion estimati lculate p(wj,) g (6) and
find E(w},t).

7 ormant state: 1 wh) < occluded, €Nter the dormant

(7) D if E(wj,) < 6 he d
state with NS;'-,, = Ndormant> and go to step (1).

ctive state: 1 wh ) > becluded, enter the active state

(8) Acti if E(wj,) > 0 h
and update the number of samples NS;)t by using (10),
then go to step (1).

In the estimation and updating process, we need to in-
tegrate intercamera information and use homography H(g,
i) to transform the variables wé-,t and x’, onto a reference
plane g that represents the birds-eye view of the ground. This
ground plane is intuitionally used to show the trajectories of
moving objects without occlusion in the birds-eye view. We
rewrite (7) as

- S p(wh) -Hig,i)x,
- Z:‘n:lp(wj',t)

, (12)

where g indicates the ground plane and H(g,7) transforms the
target position from view i to the birds-eye view g. Besides,
as the number of views increases, it is more convenient to
calculate 2m homographic matrices rather than mx(m—1) =
m? — m homographic matrices.
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TaBLE 1: Comparison of the regular PF and cooperative PF.

Particle no. MOTP m fp mme MOTA

Cooperative PF 80 240 mm 6.1% 5.2% 0% 88.7%

Regular PF 600 235mm 7.1% 5.4% 0% 87.5%

Sequence no. 1

(Figure 6) (2 objects) Regular PF 300 267 mm 8.3% 7.1% 0% 84.6%
Regular PF 100 295 mm 55.6% 48.4% 12.2% —15.8%
Regular PF 80 363 mm 62.2% 54.2% 15.1% -31.5%

Cooperative PF 100 220 mm 4.6% 4.2% 0% 91.2%

Regular PF 600 268 mm 11.2% 10.1% 0% 78.7%

Sequence no. 2

(Figure 7) (2 objects) Regular PF 400 330 mm 58.1% 45.5% 11.6% —15.2%
Regular PF 300 340 mm 59.2% 57.3% 9.2% —25.7%
Regular PF 100 358 mm 76.4% 69.6% 13.3% -39.3%

Cooperative PF 100 189 mm 8.1% 6.3% 0% 85.4%

Sequence no. 3 Regular PF 200 224 mm 7.5% 8.3% 0% 84.2%
(Figure 8) (3 objects) Regular PF 160 365 mm 59.2% 46.6% 10.6% ~16.4%
Regular PF 100 389 mm 58.6% 56.3% 8.2% —23.1%

Cooperative PF 200 194 mm 9.5% 8.4% 0% 82.3%
Regular PF 600 237 mm 60.9% 56.6% 12.8% —28.3%

Sequence no. 4 (3 ) 0 . 0
objects) Regular PF 400 287 mm 63.9% 56.3% 10.2% —-30.4%
Regular PF 300 367 mm 68.9% 65.4% 13.3% —44.6%
Regular PF 200 389 mm 72.9% 68.4% 14.4% =52.7%

5. EXPERIMENTAL RESULTS

In the experiments, we use a 4-channel Winnov Videum
video card to capture the synchronized video sequences by
using three CCD cameras fixed on the ceiling. We put some
markers on the ground for camera calibration by using the
DIT. The color image frame resolution is 160 x 120 and the
frame rate is 30 Hz. In the experiments, the indoor scene of
multiple human objects walking in different paths is cap-
tured in different views. With eight different video sequences,
we test our method and compare it with the noncooperative
regular tracking.

As shown in Figure 6 (video sequence no. 1 with 3600
frames), once a long occlusion occurs, our method can con-
tinue tracking, whereas the regular noncooperative tracking
may lose the target. Figure 6(a) shows that when the target
is occluded in view 1, the tracking process fails. The samples
located around the previous mean position are used for es-
timating the occluded target. They may not match the real
target. In Figure 6(b), the target may be lost when occlusion
occurs in view 2. Once the two targets approach each other,
the number of particles for tracking the partially occluded
object (human object dressed in black) in view 1 decreases,
whereas the number of particles for tracking the same target
in view 2 increases. The tracking process for the more reliable
view is granted more computation resources to trace the tar-
get. Once the view becomes unreliable, the weighted tracking
results from the other views will be used as a new position to
reinitialize the tracker.

The comparisons of tracking three image sequences using
regular particle filtering (PF) algorithm and ours are shown
in Table 1. We apply a different number of particle samples

per target to trace the target after occlusions. When target is
partially occluded, the tracking process still can track the ob-
ject until it is completely occluded. When the target is com-
pletely occluded, the corresponding tracking process enters
the dormant state, and it still continues trying to locate the
object based on the information provided from the other ac-
tive trackers.

The tracking results are evaluated frame by frame based
on the distance between the real target and the hypothesis.
The frame-based evaluation counts the number of frames of
successful tracking in which the targets may be completely
visible, partially occluded, or completely occluded. To eval-
uate the performance for each testing video sequence, we
adopt the metric proposed in [24]. Two metrics employed
are the multiple object tracking precision (MOTP) and the
multiple object tracking accuracy (MOTA). The former (i.e.,
MOTP) is the total position error for matched object hypoth-
esis pairs over all frames, averaged by the total number of
matches, which is defined as follows:

idiy

MOTP = ,
ZtCt

(13)

where ¢ ; is the number of matches found in time t. The
match at time ¢ is found when the distance between the ob-
ject 0 ; and its corresponding hypothesis d ;; is less than
certain threshold, d;; < T. If d;y > T, then it is a mis-
match. We may estimate the position of human object on
the ground using (12); d ;; is measured in minimeter (mm)
and the threshold T' = 500 mm. MOTP shows the ability
of the tracker to estimate precise object positions, indepen-
dent of its skill at recognizing object configurations, keeping
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TaBLE 2: Tracking the objects with 100 particles per tracker.
MOTP 7 (%) fp (%) mme (%) MOTA
PF in single view 194 mm 7.3% 6.1% 0% 86.6%
Sequence no. 5 . . o o o 0
(Figure 9) (2 objects) Cooperative PF (2 views) 210 mm 7.3% 5.5% 0% 87.2%
Cooperative PF (3 views) 220 mm 6.3% 5.3% 0% 88.4%
PF in single view 367 mm 27.3% 28.1% 0% 44.5%
Sequence no. 6 > . 0 0 ) 0
(Figure 10) (3 objects) Cooperative PF (2 views) 224 mm 9.8% 9.1% 0% 81.1%
Cooperative PF (3 views) 189 mm 6.3% 5.2% 0% 88.5%
TasLE 3: Tracking the objects with 80 particles per tracker.
MOTP 7 (%) p (%) mme (%) MOTA
Sequence no. 7 PF in single view 232 mm 20.3% 18.1% 0% 61.6%
(Figure 11) (3 objects) Cooperative PF (3 views) 192 mm 7.4% 6.2% 0% 86.4%
Sequence no. 8 PF in single view 325 mm 12.3% 11.2% 0% 76.5%
(Figure 12) (3 objects) Cooperative PF (3 views) 204 mm 9.7% 7.8% 0% 82.5%

consistent trajectories, and so forth. The multiple object
tracking accuracy (MOTA) is defined as

(14)

MOTA = 1 — (Ztm, + fp, +mme,>)

Zzgt

where m;y, fp, and mme; are the number of misses of false
positives and mismatches, respectively, for time t. g denotes
the number of objects at time ¢. The MOTA is composed of
3 error ratios in the sequence: (1) the ratio of misses, m =
Xymy/24g:, (2) the ratio of false positives, E = 2fp,/Z1g, and
(3) the ratio of mismatches, mme = X,;mme;/Z;g;, computed
over the total number of objects X:g; presented in all frames.
The MOTA accounts for all object configuration errors made
by the tracker over all frames.

In video sequence no. 1, there are two persons making
five occlusions. Each time after along occlusion, the occluded
person changes moving direction. After the occlusion, the
tracking process may either resume tracking or lose the tar-
get. If it has lost tracking the target, we will consider it a
failure. It was not until we had assigned at least 300 parti-
cle samples for the tracking process that the regular PF could
maintain tracking the targets after all occlusions.

In Figure 7 (video sequence no. 2 with 3600 frames), af-
ter a long occlusion, the regular PF lost one of the separating
objects, because they are dressed in similar color, as shown in
Figure 7(a). Because the number of particles is not sufficient
(less than 400), the tracking process is trapped in a local min-
imum. Comparing Figures 7(a) and 7(c), our method can
track the two separating objects after occlusion effectively by
using a fewer number of particles (see Table 1).

In Figure 8 (video sequence no. 3 with 3600 frames),
three human objects follow a regular moving pattern. Two
persons circle around the third one and make these three hu-
man objects in the same projection line of sight in one of the
two views. At that moment, it looks like there is only one per-
son appearing in that specific view. As shown in Table 1, the

regular PF tracker requires twice the number of particles to
maintain successful tracking in this scenario.

In video sequence no. 4 (with 4200 frames), there are
three persons dressed in similar color with 3 short occlusions
and 1 long occlusion. The regular PF lost tracking the oc-
cluded target after it reappeared. In the experiments, we find
that allowing more particles for the regular PF does not guar-
antee better tracking results. The tracking process often fails
after a long occlusion. The regular PF cannot find the new
location of the reappearing object that is quite different from
where it disappeared. Expanding the size of particle set does
not work since it only increases the possibility of retracing the
target only if it is still in the neighborhood. Our method will
continue tracking the target which is completely occluded
and which will then appear in a totally different place.

Figure 9 (video sequence no. 5 with 4500 frames) shows
the tracking results of three cooperative views with many oc-
currences of occlusions. In the beginning, occlusion occurs
in two views. The cooperative tracking can still locate the
objects occluded simultaneously in view 1 and view 3. The
two trackers will continue tracking after the targets reappear.
The third column shows that these two trackers help the third
tracker to locate the object occluded in the 2nd view. Finally,
all of the three views become clear and all trackers continue
tracking the object precisely.

Figure 10 (video sequence no. 6 with 4500 frames) shows
the comparison of the two-view-based and three-view-based
cooperative tracking. In Figure 10(a), the two-view-based
cooperative tracking cannot track the object when it is oc-
cluded in both views at the same time. In Figure 10(b), we
add the 3rd view to provide more reliable information for
tracking the object. Hence, the tracker in the 3rd view con-
tributes much more reliable tracking information for the
other two views to make the tracking continue after the oc-
clusion. The precisions of the tracking results are shown in
Table 2.

Figure 11 (video sequence no. 7 with 8000 frames) shows
three-view-based cooperative tracking of the human objects
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moving in the lobby of EECS building. The number of parti-
cles assigned to each tracker is 80. Figure 12 (video sequence
no. 8 with 6000 frames) shows another three-view-based co-
operative tracking in another scene of the EECS building. In
Figures 11 and 12, we show three-view cooperative tracking
which provides more reliable information for tracking the
object. Hence, the tracker in the 3rd view contributes much
more reliable tracking information for the other two views
to make the tracking continue after the occlusion. The preci-
sions of the tracking results are listed in Table 3.

In the above experiments, by properly distributing the
tracking resource, we may avoid the risk of losing the object
after occlusion. We find that using more cameras provides
more chances of obtaining clear observation, and the sys-
tem will have more flexibility in dealing with the occlusions.
However, there are still some problems for multiple view
tracking. For example, the color distribution of the same ob-
ject may be different in different views because of the changes
in lighting of the environments and the quality of CCD sen-
sors. This can be solved by developing adaptive multiple tar-
get models for tracking the same object in different views.

6. CONCLUSIONS

We have developed a cooperative tracking model by integrat-
ing tracking results across views and applying a sequence of
hidden processes containing human interaction information.
This hidden information reveals the instability of the track-
ers. As a result, we then allocate computations among multi-
ple views efficiently. In the experiments, we have proved that
our cooperative tracking system is more effective than the
regular noncooperative tracking system.
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