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Abstract 

Training Convolutional Neural Networks (CNN) is a resource-intensive task that requires 
specialized hardware for efficient computation. One of the most limiting bottlenecks 
of CNN training is the memory cost associated with storing the activation values of 
hidden layers. These values are needed for the computation of the weights’ gradi-
ent during the backward pass of the backpropagation algorithm. Recently, reversible 
architectures have been proposed to reduce the memory cost of training large CNN 
by reconstructing the input activation values of hidden layers from their output dur-
ing the backward pass, circumventing the need to accumulate these activations in 
memory during the forward pass. In this paper, we push this idea to the extreme and 
analyze reversible network designs yielding minimal training memory footprint. We 
investigate the propagation of numerical errors in long chains of invertible operations 
and analyze their effect on training. We introduce the notion of pixel-wise memory cost 
to characterize the memory footprint of model training, and propose a new model 
architecture able to efficiently train arbitrarily deep neural networks with a minimum 
memory cost of 352 bytes per input pixel. This new kind of architecture enables 
training large neural networks on very limited memory, opening the door for neural 
network training on embedded devices or non-specialized hardware. For instance, we 
demonstrate training of our model to 93.3% accuracy on the CIFAR10 dataset within 67 
minutes on a low-end Nvidia GTX750 GPU with only 1GB of memory.

Keywords: CNN, Reversibility, Memory optimization, Numerical analysis

1 Introduction
Over the last few years, Convolutional Neural Networks (CNN) have enabled unprec-
edented progress on a wide array of computer vision tasks. One disadvantage of these 
approaches is their resource consumption: training deep models within a reasonable 
amount of time requires special Graphical Processing Units (GPU) with numerous 
cores and large memory capacity. Given the practical importance of these models, a lot 
of research effort has been directed towards algorithmic and hardware innovations to 
improve their resource efficiency such as low-precision arithmetic [1], network pruning 
for inference [2], or efficient stochastic optimization algorithms [3].
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In this paper, we focus on a particular aspect of resource efficiency: optimizing the 
memory cost of training CNNs. We envision several potential benefits from the ability to 
train large neural networks within limited memory:

Democratization of deep learning research: Training large CNNs requires special 
GPUs with large memory capacity. Typical desktop GPUs memory capacity is too small 
for training large CNNs. As a result, getting into deep learning research comes with the 
barrier cost of either buying specialized hardware or renting live instances from cloud 
service providers. Reducing the memory cost of deep model training would allow train-
ing deep networks on standard graphic cards without the need for specialized hardware, 
effectively removing this barrier cost. In this paper, we demonstrate efficient training of 
a CNN on the CIFAR10 dataset (93.3% accuracy within 67 min) on an Nvidia GTX750 
with only 1 GB of memory.

On-device training: With mobile applications, a lot of attention has been given to opti-
mize inference on edge devices with limited computation resources. Training state-of-
the-art CNN on embedded devices, however, has still received little attention. Efficient 
on-device training is a challenging task for the underlying power efficiency, computa-
tion and memory optimization challenges it involves. As such, CNN training has thus 
far been relegated to large cloud servers, and trained CNNs are typically deployed to 
embedded device fleets over the network. On-device training would allow bypassing 
these server–client interactions over the network. We can think of several potential 
applications of on-device training, including:

• Life-long learning: Autonomous systems deployed in evolving environments like 
drones, robots or sensor networks might benefit from continuous life-long learning 
to adapt to their changing environment. On-device training would enable such appli-
cation without the expensive communication burden of having edge devices contin-
uously sending their data to remote servers over the network. It would also provide 
resilience to network failures in critical application scenarios.

• In privacy-critical applications such as biometric mobile phone authentication, users 
might not want to have their data sent over the network. On-device training would 
allow fine-tuning recognition models on local data without sending sensitive data 
over the network.

In this work, we propose an architecture with minimal training memory cost require-
ments which enables training within the tight memory constraints of embedded devices.

Research in optimization: Recent works on stochastic optimization algorithms have 
highlighted the benefits of large batch training [4, 5]. For example, in Imagenet, lin-
ear speed-ups in training have been observed with increasing batch sizes up to tens 
of thousands of samples [5]. Optimizing the memory cost of CNN training may allow 
further research on the optimization trade-offs of large batch training. For small data-
sets like MNIST or CIFAR10, we are able to process the full dataset in 14 and 18 GB of 
memory, respectively. Although large batch training on such small dataset is very com-
putationally inefficient with current stochastic optimization algorithms [5], the ability 
to process the full dataset in one pass allows to easily train CNNs on the true gradient 
of the error. Memory optimization techniques have the potential to facilitate research 
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on optimization techniques outside the realm of Stochastic Gradient Descent to be 
investigated.

In this paper, we build on recent works on reversible networks [6, 7] and ask the ques-
tion: how far can we reduce CNN training memory cost using reversible designs with 
minimal impact on the accuracy and computational cost? To do so, we take as a start-
ing point the Resnet-18 architecture and analyze its training memory requirements. We 
then analyze the memory cost reduction of invertible designs successively introduced 
in the RevNet and iRevNet architectures. We identify the memory bottleneck of such 
architectures, which leads us to introduce a layer-wise invertible architecture. However, 
we observe that layer-wise invertible networks accumulate numerical errors across their 
layers, which leads to numerical instabilities impacting model accuracy. We character-
ize the accumulation of numerical errors within long chains of revertible operations and 
investigate their effect on model accuracy. To mitigate the impact of these numerical 
errors on the model accuracy, we propose both a reparameterization of invertible layers 
and a hybrid architecture combining the benefits of layer-wise and residual-block-wise 
reversibility to stabilize training.

Our main result is to present a new architecture that allows to efficiently train a CNN 
with the minimal memory cost of 352 bytes per pixel. We demonstrate the efficiency of 
our method by efficiently training a model to 93.3% accuracy on the CIFAR10 dataset 
within 67 minutes on a low-end Nvidia GTX750 with only 1 GB of VRAM.

2  Related work
2.1  Reversibility

Reversible network designs have been proposed for various purposes including genera-
tive modeling, visualization, solving inverse problems, or theoretical analysis of hidden 
representations.

Flow-based generative models use analytically invertible transformations to compute 
the change of variable formula. Invertibility is either achieved through channel parti-
tioning schemes (NICE [8] Real-NVP [9]), weight matrix factorization (GLOW [10]) or 
constraining layer architectures to easily invertible unitary operations (Normalization 
flows [11])

Neural ODEs [12] take a drastically different take on invertibility: They leverage the 
analogy between residual networks and the Euler method to define continuous hid-
den state systems. The conceptual shift from a finite set of discrete transformations to a 
continuous regime gives them invertibility for free. The computational efficiency of this 
approach, however, remains to be demonstrated.

The RevNet model [6] was inspired by the Real-NVP generative model. They adapt 
the idea of channel partitioning and propose an efficient architecture for discrimina-
tive learning. The iRevNet [7] model builds on the RevNet architecture: they propose 
to replace the irreversible max-pooling operation with an invertible operation that 
reshapes the hidden activation states so as to compensate the loss of spatial resolu-
tion by an increase in the channel dimension. By preserving the volume of activations, 
their pooling operation allows for exact reconstruction of the inverse. In their origi-
nal work, the authors focus on the analysis of the representations learned by invertible 
models rather than resource efficiency. From a resource optimization point of view, one 
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downside of their method is that the proposed invertible pooling scheme drastically 
increases the number of channels in upper layers. As the size of the convolution kernel 
weights grows quadratically in the number of channels, the memory cost associated with 
storing the model weights becomes a major memory bottleneck. We address this issue 
in our proposed architecture. In [13], the authors use these reversible architectures to 
study undesirable invariances in feature space.

In [14], the authors propose a unified architecture performing well on both genera-
tive and discriminative tasks. They enforce invertibility by regularizing the weights of 
residual blocks so as to guarantee the existence of an inverse operation. However, the 
computation of the inverse operation is performed with power iteration methods which 
are not optimal from a computational perspective.

Finally, [15] propose to reconstruct the input activations of normalization and activa-
tion layers using their inverse function during the backward pass. We propose a similar 
method for layer-wise invertible networks. However, as their model does not invert con-
volution layers, it does not feature long chains of invertible operations so that they do 
not need to account for numerical instabilities. Instead, our proposed model features 
long chains of invertible operations so that we need to characterize numerical errors in 
order to stabilize training.

2.2  Resource efficiency

Research into resource optimization of CNNs covers a wide array of techniques, most of 
which are orthogonal to our work. We briefly present some of these works.

On the architectural side, Squeezenet [16] was first proposed as an efficient neural 
architecture reducing the number of model parameters while maintaining high clas-
sification accuracy. MobileNet [17] uses depth-wise separable convolutions to further 
reduce the computational cost of inference for embedded device applications.

Network pruning [2] is a set of techniques developed to decrease the model weight 
size and computational complexity. Network pruning works by removing the network 
weights that contribute the least to the model output. Pruning deep models has been 
shown to drastically reduce the memory cost and computational cost of inference with-
out significantly hurting model accuracy. Although pruning has been concerned with 
optimization of the resource inference, the recently proposed lottery ticket hypothesis 
[18] has shown that specifically pruned networks could be trained from scratch to high 
accuracy. This may be an interesting and complementary line of work to investigate in 
the future to reduce training memory costs.

Low precision arithmetic has been proposed as a mean to reduce both memory con-
sumption and computation time of deep learning models. Mixed precision training 
[19] combines FP16 with FP32 operations to avoid numerical instabilities due to either 
overflow or underflow. For inference, integer quantization [1, 20] has been shown to 
drastically improve the computation and memory efficiency and has been successfully 
deployed on both edge devices and data centers. Integrating mixed-precision training to 
our proposed architecture would allow us to further reduce training memory costs.

Accumulating the weights’ gradients over multiple batches is used to increase the 
effective batch size during the training with constant memory requirements. Although 
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this method allows for training on arbitrary large batch sizes, it does not reduce the 
memory requirements for training on a single batch.

Most related to our work, gradient checkpointing was introduced as a mean to reduce 
the memory cost of deep neural network training. Gradient checkpointing, first intro-
duced in [21], trades off memory for computational complexity by storing only a subset 
of the activations during the forward pass. During the backward pass, missing activa-
tions are recomputed from the stored activations as needed by the backpropagation 
algorithm. Follow-up work [22] has since built on the original gradient checkpointing 
algorithm to improve this memory/computation trade-off. However, reversible models 
like RevNet have been shown to offer better computational complexity than gradient 
checkpointing, at the cost of constraining the model architecture to invertible residual 
blocks.

3  Preliminaries
In this section, we analyze the memory footprint of training architectures with differ-
ent reversibility patterns. We start by introducing some notations and briefly review the 
backpropagation algorithm in order to characterize the training memory consumption 
of deep neural networks. In our analysis, we use a Resnet-18 as a reference baseline and 
analyze its training memory footprint. We then gradually augment the baseline archi-
tecture with reversible designs and analyze their impact on computation and memory 
consumption.

3.1  Backpropagation and notations

Let us consider a model F made of N sequential layers trained to minimize the error e 
defined by a loss function L for an input x and ground-truth label ȳ : 

During the forward pass, each layer fi takes as input the activations zi−1 from the pre-
vious layer and outputs activation features zi = fi(zi−1) , with z0 = x and zN = y being 
the input and output of the network, respectively.

During the backward pass, the gradient of the loss with respect to the hidden activa-
tions are propagated backward through the layers of the networks using the chain rule 
as:

Before propagating the loss gradient with respect to its input to the previous layer, each 
parameterized layer computes the gradient of the loss with respect to its parameters. In 
vanilla SGD, for a given learning rate η , the weight gradients are subsequently used to 
update the weight values as: 

(1a)F : x → y,

(1b)y = fN ◦ . . . ◦ f2 ◦ f1(x),

(1c)e = L(y, ȳ).

(2)
δL

δzi−1

= δL

δzi
× δzi

δzi−1

.
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However, the analytical form of the weight gradients are functions of the layer’s input 
activations zi−1 . In convolution layers, for instance, the weight gradients can be com-
puted as the convolution of the input activation by the output’s gradient:

Hence, computing the derivative of the loss with respect to each layer’s parameters θi 
requires knowledge of the input activation values zi−1 . In the standard backpropagation 
algorithm, hidden layers activations are stored in memory upon computation during the 
forward pass. Activations accumulate in live memory buffers until used for the weight 
gradients computation in the backward pass. Once the weight gradients computed in the 
backward pass, the hidden activation buffers can be freed from live memory. However, 
the accumulation of activation values stored within each parameterized layer along the 
forward pass creates a major bottleneck in GPU memory.

The idea behind reversible designs is to constrain the network architecture to feature 
invertible transformations. Doing so, activations zi in lower layers can be recomputed 
through inverse operations from the activations zj>i of higher layers. In such architec-
tures, activation do not need to be kept in memory during the forward pass as they can 
be recomputed from higher layer activations during the backward pass, effectively free-
ing up the GPU live memory.

3.2  Memory footprint

We denote the memory footprint of training a neural network as a value M in bytes. 
Given an input x and ground-truth label ȳ , the memory footprint represents the peak 
memory consumption during an iteration of training including the forward and back-
ward pass. We divide the total training memory footprint M into several memory cost 
factors: the cost Mθ of storing the model weights, the hidden activations Mz , and the 
hidden activations’ gradients Mg:

We choose not to include the cost of storing the gradients of the weights in our analysis 
since their accumulation has more to do with the implementation details of current dif-
ferentiable frameworks than with algorithmic necessity. In the following subsections, we 
detail the memory footprint of existing architectures with different reversibility patterns. 
To help us formalize these memory costs, we further introduce the following notations: 
let n(x) denote the number of elements in a tensor x, i.e., if x is an h× w matrix, then 
n(x) = h× w . Let bpe be the memory cost in bytes per elements of a given precision 
so that the actual memory cost for storing an h× w matrix is n(x)× bpe . For instance, 

(3a)
δL

δθi
= δL

δzi
× δzi

δθi
,

(3b)θi ← θi − η × δL

δθi
.

(4)
δL

δθi
= zi−1 ⋆

δL

δzi
.

(5)M = Mθ +Mz +Mg .
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FP32 tensors have a memory cost per element bpe = 4 . We use bs to denote the batch 
size, and ci to denote the number of channels at layer i.

It should be noted that the memory cost of the activations and the gradients are pro-
portional to the size of the input image batch: training a CNN on twice larger input 
image batch sizes or twice higher resolution requires twice more memory. Thus, these 
costs, for a given architecture, are better characterized in bytes per input pixels, which 
we denote M′

z and M′
g , respectively, and are defined by: 

The memory cost of the weights, on the other hand, is independent of the input size 
and thus reported in bytes.

3.3  Vanilla ResNet

The architecture of a vanilla ResNet-18 is shown in Fig. 1. Vanilla ResNets do not use 
reversible computations so that the input activations of all parameterized layers need to 

(6a)M′
z =

Mz

bs × h× w
,

(6b)M′
g =

Mg

bs× h× w
.

Fig. 1 Illustration of the ResNet-18 architecture and its memory requirements. Modules contributing to the 
peak memory consumption are shown in red. These modules contribute to the memory cost by storing 
their input in memory. The green annotation represents the extra memory cost of storing the gradient in 
memory. The peak memory consumption happens in the backward pass through the last convolution so that 
this layer is annotated with an additional gradient memory cost. At this step of the computation, all lower 
parameterized layers have stored their input in memory, which constitutes the memory bottleneck
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be accumulated in memory during the forward pass for the computation of the weight 
gradients to be done in the backward pass.

Hence the peak memory footprint of training a vanilla ResNet happens at the begin-
ning of the backward pass when the top layer’s activation gradients need to be stored in 
memory in addition to the full stack of hidden activation values.

Let us denote by P ⊂ N  the subset of parameterized layers of a network F (i.e., convolu-
tions and batch normalization layers, excluding activation functions and pooling layers). 
The memory cost associated with storing the hidden activation values is given by: 

where hi and wi represent the spatial dimensions of the activation values at layer i. hi 
and wi are determined by the input image size h× w and the pooling factor pi of layer i, 
so we can factor out both the spatial dimensions and the batch size from this equation, 
yielding the memory cost per input pixel: 

The memory footprint of the weights is given by:

The memory footprint of the gradients correspond to the size of the gradient buffers at 
the time of peak memory usage. In a vanilla ResNet18 model, this peak memory usage 
happens during the backward pass through the last convolution of the network. Hence, 
the memory footprint of the gradients correspond to the memory cost of storing the gra-
dients with respect to either the input or the output of this layer. 

(7a)Mz =
i∈P

n(zi)× bpe

(7b)=
∑

i∈P
bs × ci × hi × wi × bpe,

(8a)Mz =
∑

i∈P
bs × h× w × pi × ci × bpe

(8b)= bs × h× w ×
∑

i∈P
pi × ci × bpe,

(8c)M′
z =

∑

i∈P
pi × ci × bpe.

(9)Mθ =
∑

i∈P
n(θi)× bpe.

(10a)Mg = max(n(gN−1), n(gN ))× bpe

(10b)= h× w × bs × pi ×max(cN−1, cN )× bpe,

(10c)M′
g = pi ×max(cN−1, cN )× bpe.
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Figure 1 illustrates the peak memory consumption of a ResNet-like architecture. For 
a ResNet parameterized following Table 1, the peak memory consumption can then be 
computed as: 

(11d)
For example, a training iteration over a typical batch of 32 images of resolution 

240× 240 requires 12.5 MB of memory to store the model weights and 3.8 GB of mem-
ory to store the hidden layers activations and gradients for a total of M = 3.81 GB of 
VRAM. The memory cost of the hidden activations is thus the main memory bottle-
neck of training a ResNet as the cost associated with the model weights is negligible in 
comparison.

3.4  RevNet

The RevNet architecture introduces reversible blocks as drop-in replacements of the 
residual blocks of the ResNet architecture. Reversible blocks have analytical inverses 
that allow for the computation of both their input and hidden activation values from 
the value of their output activations. Two factors create memory bottlenecks in training 
RevNet architectures, which we refer to as the local and global bottlenecks.

First, the RevNet architecture features non-volume preserving max-pooling lay-
ers, for which the inverse cannot be computed. As these layers do not have analytical 
inverses, their input must be stored in memory during the forward pass for the recon-
struction of lower layer’s activations to be computed during the backward pass. We refer 
to the memory cost associated with storing these activations as the global bottleneck, 
since these activations need to be accumulated during the forward pass through the full 
architecture.

The local memory bottleneck has to do with the synchronization of the reversible 
block computations: while activations values are computed by a forward pass through 
the reversible block modules, gradients computations flow backward through these 
modules so that the activations and gradient computations cannot be performed simul-
taneously. Figure 2 illustrates the process of backpropagating through a reversible block: 
first, the input activation values of the parameterized hidden layers within the revers-
ible blocks are recomputed from the output. Once the full set of activation have been 
computed and stored in GPU memory, the backpropagation of the gradients through the 
reversible block can begin. We refer to the accumulation of the hidden activation values 
within the reversible block as the local memory bottleneck.

For a typical parameterization of a RevNet, as summarized in Table 1, the local bottleneck 
of lower layers actually outweighs the global memory bottleneck introduced by non-revers-
ible pooling layers. Indeed, as the spatial resolution decreases with pooling operations, 
the cost associated with storing the input activations of higher layers becomes negligible 

(11a)M = Mθ +Mz +Mg

(11b)= Mθ + (M′
z +M′

g )× (h× w × bs)

(11c)= 12.5 ∗ 106 + 1928× (h× w × bs).



Page 10 of 30Hascoet et al. EURASIP Journal on Image and Video Processing          (2023) 2023:1 

compared to the cost of storing activation values in lower layers. Hence, surprisingly, the 
peak memory consumption of the RevNet architecture, as illustrated in Fig. 3, happens in 
the backward pass through the first reversible block, in which the local memory bottleneck 

Fig. 2 Illustration of the backpropagation process through a reversible block. In the forward pass (left), 
activations are propagated forward from top to bottom. The activations are not kept in live memory as they 
are to be recomputed in the backward pass so no memory bottleneck occurs. The backward pass is made 
of two phases: first the hidden and input activations are recomputed from the output through an additional 
forward pass through both modules (middle). Once the activations recomputed, the activations gradient 
are propagated backward through both modules of the reversible blocks (right). Because the activation and 
gradient computations flow in opposite directions through both modules, both computations cannot be 
efficiently overlapped, which results in the local memory bottleneck of storing all hidden activations within 
the reversible block before the gradient backpropagation step

Fig. 3 Illustration of the Revnet architecture and its memory consumption. Modules contributing to the 
peak memory consumption are shown in red. The peak memory consumption happens during the backward 
pass through the first reversible block. At this step of the computations, all hidden activations within the 
reversible block are stored in memory simultaneously
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is maximum. For the architecture described in Table 1, the peak memory consumption can 
be computed as: 

Following our previous example, a RevNet architecture closely mimicking the ResNet-18 
architecture requires M = 1.19 GB of VRAM for a training iteration over batch of 32 
images of resolution 240× 240.

Finally, the memory savings allowed by the reversible block come with the additional 
computational cost of computing the hidden activations during the backward pass. As 
noted in the original paper, this computational cost is equivalent to performing one addi-
tional forward pass.

3.5  iRevNet

The iRevNet model builds on the RevNet architecture: they replace the irreversible max-
pooling operation with an invertible operation that reshapes the hidden activation states so 
as to compensate for the loss of spatial resolution by an increase in the channel dimension. 
As such, the iRevNet architecture is fully invertible, which alleviates the global memory 
bottleneck of the RevNet architecture.

This pooling operation works by stacking the neighboring elements of the pooling regions 
along the channel dimension, i.e., for a 2D pooling operation with 2× 2 pooling window, 
the number of output channels is four times the number of input channels. Unfortunately, 
the size of a volume-preserving convolution kernel grows quadratically in the number of 
input channels: 

Consider an iRevNet network with initial channel size 32. After three levels of 2× 2 pool-
ing, the effective channel size becomes 32× 43 = 2048 . A typical 3× 3 convolution layer 
kernel for higher layers of such network would have n(θ) = 20482 × 3× 3 = 37M param-
eters. At this point, the memory cost of the network weights Mθ becomes an additional 
memory bottleneck.

Furthermore, the iRevNet architecture does not address the local memory bottleneck of 
the reversible blocks. Figure 4 illustrates such architecture. For an initial channel size of 32, 
as summarized in Table 1, the peak memory consumption is given by: 

(12a)M = Mθ +Mz +Mg

(12b)= (Mθ + (M′
z +M′

g )× (h× w × bs)

(12c)= 12.7× 10
6 + 640× (h× w × bs).

(13a)M(θ) = cin × cout × kh × kw

(13b)= c2 × kh × kw .

(14a)M = Mθ +Mz +Mg

(14b)= Mθ + (M′
z +M′

g )× (h× w × bs)
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Training such an architecture for an iteration over batches of 32 images of resolu-
tion 240× 240 would require M = 1.35 GB of VRAM. In the next section, we intro-
duce both layer-wise reversibility, and a variant on this pooling operations to address 
the local memory bottleneck of reversible blocks, and the weight memory bottleneck, 
respectively.

4  Method
RevNet and iRevNet architectures implement reversible transformations at the level 
of residual blocks. As we have seen in the previous section, the design of these revers-
ible blocks creates a local memory bottleneck as all hidden activations within a revers-
ible block need to be computed before the gradients are backpropagated through the 
block. In order to circumvent this local bottleneck, we introduce layer-wise invert-
ible operations in section 4.2. However, these invertible operations introduce numeri-
cal errors, which we characterize in the following subsections. In section 5, we will 
show that these numerical errors lead to instabilities that degrade the model accu-
racy. Hence, in "Hybrid architecture", we propose a hybrid model combining layer-
wise and residual block-wise reversible operations to stabilize training while resolving 
the local memory bottleneck at the cost of a small additional computational cost. 
Section 4.1 starts by motivating the need for, and the methodology of, our numerical 
error analysis.

(14c)= 171× 10
6 + 640× (h× w × bs).

Fig. 4 Illustration of the i-Revnet architecture and its memory consumption. The peak memory consumption 
happens during the backward pass through the top reversible block. In addition to this local memory 
bottleneck, the cost of storing the top layers weights (in orange) becomes a new memory bottleneck as the 
weight kernel size grows quadratically in the number of channels
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4.1  Numerical error analysis

Invertible networks are defined as the composition of invertible operations. During the 
backward pass, each operation is supposed to reconstruct its input x given the value of its 
output y using its inverse function: 

In reality, however, the output of the network is an approximation of its true analytical 
value due to floating point numbers’ precision ŷ = y+ ǫy . Hence, the noisy input x̂ recon-
structed by the inverse operation contains a noise ǫx due to the noise ǫy in the output, and 
the error propagates through the successive inverse computations. 

The operation f may either refer to an individual layer, as is the case for the layer-wise 
invertible architecture we propose in this paper, or at the level of residual blocks as for the 
reversible blocks proposed in RevNet or iRevNet.

For each operation, we can compute the signal-to-noise ratio (SNR) of its output and 
input, respectively: 

We are interested in characterizing the factor α of reduction of the SNR through the 
inverse reconstruction:

Indeed, given a layer i in a network, its input zi will be reconstructed from the noisy 
network output ŷ by the composition of its upstream layers. Hence, the noise ǫi in the 
reconstructed and noisy input ẑi can be computed as: 

(15a)y = f (x),

(15b)x = f −1(y).

(16a)x̂ = f −1(y+ ǫy),

(16b)x̂ = (x + ǫx),

(16c)ǫx = x − f −1(y+ ǫy).

(17a)snro =
|y|2
|ǫy|2 ,

(17b)snri =
|x|2
|ǫx|2 .

(18)α = snri

snro
.

(19a)ẑi = zi + ǫi,

(19b)ẑi = f −1
i ◦ f −1

i+1 ◦ . . . ◦ f
−1
N (ŷ),
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As zi is used in the computation of layer i’s weights’ gradients according to Eq. 4, accu-
mulated errors yield noisy gradients which prevent the network from converging as the 
SNR reaches certain levels. Hence, it is important to characterize the factor α for the dif-
ferent invertible layers proposed below.

4.2  Layer‑wise invertibility

In this section, we present invertible layers that act as drop-in replacement for con-
volution, batch normalization, pooling and non-linearity layers. We then character-
ize the numerical instabilities arising from the invertible batch normalization and 
non-linearities.

4.2.1  Invertible batch normalization

As batch normalization is not a bijective operation, it does not admit an analytical 
inverse. However, the inverse reconstruction of a batch normalization layer can be real-
ized with minimal memory cost. Given first- and second-order moment parameters β 
and γ , the forward f and inverse f −1 operation of an invertible batch normalization layer 
can be computed as follows: 

where x̂ and ẋ represent the mean and variance of x, respectively. Hence, the input acti-
vation x can be recovered from y through f −1 at the minimal memory cost of storing the 
input activation statistics x̂ and ẋ.

The formula for the SNR reduction factor of the batch normalization is given below:

in which c represents the number of channels. The full proof of this formula is given in 
the Appendix. The only assumption made by this proof is that both the input x and out-
put noise ǫy are identically distributed across all channels, which we have found to hold 
true in practice.

In essence, numerical instabilities in the inverse computation of the batch normaliza-
tion layer arise from the fact that the signal across different channels i and j are amplified 
by different factors γi and γj . While the signal amplification in the forward and inverse 
path cancel out each other ( x = f −1(f (x)) ), the noise only gets amplified in the back-
ward pass, which degrades the reconstructed signal.

(19c)|ǫi|2 =
|ǫy|2 × |zi|2

|y|2 ×
N
∏

i

αj .

(20a)y = f (x) = γ × x − x̂√
ẋ + ǫ

+ β ,

(20b)x = f −1(y, x̂, ẋ) = (
√
ẋ + ǫ)× y− β

γ
+ x̂,

(21)α =
∑

i(x̂
2
i + ẋi)

∑

i(γ
2
i + β2

i )
× c

∑

i

√
ẋi+ǫ
γi

,
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We verify the validity of equation (22ac) by empirically evaluating the different α 
ratio yielded by a toy parameterization of the batch normalization using only two 
channels with parameters and γ = [1, ρ] . This toy parameterization has been used by 
the proof in the Appendix. The factor ρ there represents the imbalance in the multi-
plicative factor between both channels. Figure  5 shows the expected evolution of α 
through our toy layer for different values of the factor ρ . and find it to closely match 
the theoretical results we derived.

Finally, we propose the following modification, introducing the hyperparameter ǫi , 
to the invertible batch normalization layer: 

The introduction of the ǫi hyperparameter serves two purposes: first, it stabilizes 
the numerical errors described above by lower bounding the smallest γ parameters. 
Second, it prevents numerical instabilities that would otherwise arise from the inverse 
computation as γ parameters tend towards zero.

(22a)y = f (x) = |γ + ǫi| ×
x − x̂√
ẋ + ǫ

+ β ,

(22b)x = f −1(y) = (
√
ẋ + ǫ)× y− β

|γ + ǫi|
+ x̂.

Fig. 5 Illustration of the numerical errors arising from batch normalization layers. Comparison of the 
theoretical and empirical evolution of the α ratio for different ρ values in our toy example. Empirical values 
were computed for a Gaussian input signal with zero mean and standard deviation 1 and a white Gaussian 
noise of standard deviation 10−5
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4.2.2  Invertible activation function

A good invertible activation function must be bijective (to guarantee the existence of an 
inverse function) and non-saturating (for numerical stability). For these properties, we 
focus our attention on Leaky ReLUs whose forward f and inverse f −1 computations are 
defined, for a negative slope parameter n, as follows: 

As derived in the Appendix, and following a similar proof to the batch normalization, we 
find the below formula for the SNR reduction factor:

Hence numerical errors can be controlled by setting the value of the negative slope n. As 
n tends towards 1, α converges to 1, yielding minimum signal degradation. However, as 
n tends towards 1, the network tends toward a linear behavior, which hurts the model 
expressivity. Figure 6 shows the evolution of the SNR degradation α for different negative 

(23a)y = f (x) =
{

x, if x > 0

x/n, otherwise

(23b)x = f −1(y) =
{

y, if y > 0

y× n, otherwise
.

(24)α = 4

(1+ 1

n2
)× (1+ n2)

.

Fig. 6 Illustration of the numerical errors arising from invertible activation layers. Comparison of the 
theoretical and empirical evolution of the α ratio for different negative slopes n. Empirical values were 
computed for a Gaussian input signal with zero mean and standard deviation 1 and a white Gaussian noise of 
standard deviation 10−5
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slopes n; and, in section 5, we investigate the impact of the negative slope parameter on 
the model accuracy.

It should be noted that this equation only holds for the regime |y|2 ≫ |ǫy|2 . When the 
noise reaches an amplitude similar to or greater than the activation signal, this equation no 
longer holds. However, in this regime, the signal-to-noise ratio becomes too low for train-
ing to converge, as numerical errors prevent any useful weight update. We have thus left the 
problem of characterizing this regime open.

4.2.3  Invertible convolutions

Invertible convolution layers can be defined in several ways. The inverse operation of a con-
volution is often referred to as deconvolution, and is defined for a subspace of the kernel 
weight space.

However, deconvolutions are computationally expensive and prone to numerical errors. 
Instead, we choose to implement invertible convolutions using the channel partitioning 
scheme of the reversible block for its simplicity, numerical stability and computational effi-
ciency. Hence, invertible convolutions, in our architecture, can be seen as minimal revers-
ible blocks in which both modules consist of a single convolution. Gomez et al. [6] found 
the numerical errors introduced by reversible blocks to have no impact on the model accu-
racy. Similarly, we found reversible blocks extremely stable yielding negligible numerical 
errors compared to the invertible Batch Normalization αRev ≪ αBN and Leaky ReLU layers 
αRev ≪ αLReLU.

4.2.4  Pooling

In [7], the authors propose an invertible pooling operation that operates by stacking the 
neighboring elements of the pooling regions along the channel dimension. As noted in sec-
tion 3.5, the increase in channel size at each pooling level induces a quadratic increase in the 
number of parameters of upstream convolution, which creates a new memory bottleneck.

To circumvent this quadratic increase in the memory cost of the weight, we propose a 
new pooling layer that stacks the elements of neighboring pooling regions along the batch 
size instead of the channel size. We refer to both kind of pooling as channel pooling Pc and 
batch pooling Pb , respectively, depending on the dimension along which activation features 
are stacked. Given a 2× 2 pooling region and an input activation tensor x of dimensions 
bs× c × h× w , where bs refers to the batch size, c to the number of channels and h× w 
to the spatial resolution, the reshaping operation performed by both pooling layers can be 
formalized as follows: 

(25a)Pc :x → y

(25b):Rbs×c×h×w → R
bs×4c× h

2
×w

2

(25c)Pb :x → y

(25d):Rbs×c×h×w → R
4bs×c× h

2
×w

2 .
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Channel pooling gives us a way to perform volume-preserving pooling operations 
while increasing the number of channels at a given layer of the architecture, while batch 
pooling gives us a way to perform volume-preserving pooling operations while keeping 
the number of channel constant. By alternating between channel and batch pooling, we 
can control the number of channels at each pooling level of the model’s architecture.

As this pooling operation only performs a reshaping between input and output, it does 
not induce any numerical error: αPool = 1.

4.3  Layer‑wise invertible architecture

Putting together the above building blocks, Fig. 7 illustrates a layer-wise invertible archi-
tecture. The peak memory usage for a training iteration of this architecture, as param-
eterized in Table 1, can be computed as follows: 

Training an iteration over a typical batch of 32 images with resolution 240× 240 
would require M = 590 MB of VRAM. Similar to the RevNet architecture, the recon-
struction of the hidden activations by inverse transformations during the backward pass 
comes with an additional computational cost similar to a forward pass.

(26a)M = Mθ +Mz +Mg

(26b)= Mθ + (M′
z +M′

g )× (h× w × bs)

(26c)= 29.6× 10
6 + 320× (h× w × bs).

Fig. 7 Illustration of a layer-wise invertible architecture and its memory consumption
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As analyzed in the previous section, the numerical errors in this architecture are 
dominated by Batch Normalization and Leaky ReLU layers. Following equation 19, the 
numerical error associated with the activations at a given layer i in this architecture can 
thus be approximated by:

in which N represents the number of Batch Normalization and Leaky ReLU layers 
between the layer i and the output.

4.4  Hybrid architecture

In section 5.1, we saw that layer-wise activation and normalization layers degrade the 
signal-to-noise ratio of the reconstructed activations. In "Impact of numerical stability", 
we will quantify the accumulation of numerical errors through long chains of layer-wise 
invertible operations and show that numerical errors negatively impact model accuracy.

To prevent these numerical instabilities, we introduce a hybrid architecture, illustrated 
in Fig. 8, combining reversible residual blocks with layer-wise invertible functions. Con-
ceptually, the role of the residual-level reversible block is to reconstruct the input acti-
vation of residual blocks with minimal errors, while the role of the layer-wise invertible 
layers is to efficiently recompute the hidden activations within the reversible residual 
blocks at the same time as the gradient propagates to circumvent the local memory bot-
tleneck of the reversible module.

The backward pass through these hybrid reversible blocks is illustrated in Fig.  9 
and proceeds as follows: first, the input x is computed from the output y through 

(27)ǫi|2 =
|ǫy|2 × |zi|2

|y|2 ×
N
∏

i

(αLReLU × αBN ),

Fig. 8 Illustration of a hybrid architecture and its peak memory consumption
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the analytical inverse of the reversible block. These computations are made without 
storing the hidden activation values of the sub-modules. Second, the gradient of the 
activations are propagated backward through the reversible of the block modules. As 
each layer within these modules is invertible, the hidden activation values are com-
puted using the layer-wise inverse along the gradient.

The analytical inverse of the residual-level reversible blocks is used to propagate 
hidden activations with minimal reconstruction error to the lower modules, while 
layer-wise inversion allows us to alleviate the local bottleneck of the reversible block 
by computing the hidden activation values together with the backward flow of the gra-
dients. As layer-wise inverses are only used for hidden feature computations within 
the scope of the reversible block, and reversible blocks are made of relatively short 
chains of operations, numerical errors do not accumulate up to a damaging degree.

The peak memory consumption of our proposed architecture, as illustrated in Fig. 8 
and parameterized in Table 1, can be computed as: 

Training an iteration over batch of 32 images of resolution 240× 240 would require 
M = 648 MB of VRAM.

(28a)M = Mθ +Mz +Mg

(28b)= Mθ + (M′
z +M′

g )× (h× w × bs)

(28c)= 14.8× 10
6 + 352× (h× w × bs).

Fig. 9 Illustration of the backpropagation process through a reversible block of our proposed hybrid 
architecture. In the forward pass (left), activations are propagated forward from top to bottom. The 
activations are not kept in live memory as they are to be recomputed in the backward pass so that no 
memory bottleneck occurs. The backward pass is made of two phases: first the input activations are 
recomputed from the output using the reversible block analytical inverse (middle). This step allows to 
reconstruct the input activations with minimal reconstruction error. During this step, hidden activations are 
not kept in live memory so as to avoid the local memory bottleneck of the reversible block. Once the input 
activation recomputed, the gradients are propagated backward through both modules of the reversible 
blocks (right). During this second phase, hidden activations are recomputed backward through each module 
using the layer-wise inverse operations, yielding minimal memory footprint
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It should be noted, however, that this architecture adds an extra computational cost 
as both the reversible block inverse and layer-wise inverse need to be computed. Hence, 
instead of one additional forward pass, as in the RevNet and layer-wise architectures, 
our hybrid architecture comes with a computational cost equivalent to performing two 
additional forward passes during the backward pass.

Following equation 19, the numerical error associated with the activations at a given 
layer i in this architecture are given by:

in which K represents the number of reversible blocks between the layer i and the 
output.

Comparing this equation to equation 27, the stability of this architecture is due to the 
following two factors: first the number of reversible blocks K is typically two to three 
times smaller than the number of layers N as a reversible block is typically made of sev-
eral convolutions: K < N  . Second, and most importantly, the SNR reduction factor is 
much smaller in reversible blocks than in Batch Normalization αRev ≪ αBN and Leaky 
ReLU layers αRev ≪ αLReLU.

5  Results and discussion
This section is organized in two parts: first, we start by analyzing numerical errors aris-
ing in both the layer-wise invertible and hybrid architectures. Second, we compare our 
hybrid architecture to existing models.

All our experiments use the CIFAR10 dataset as a benchmark. The CIFAR10 dataset 
is complex enough to require efficient architectures to reach high accuracy, yet small 
enough to enable us to rapidly iterate over different architectural designs.

Unless stated otherwise, all models were trained for 50 epochs of stochastic gradient 
descent with cyclical learning rate and momentum [23] with minimal image augmenta-
tion. The code used to produce the results is available at the link given in the “Availability 
of data and materials" section.

5.1  Impact of numerical stability

The idea of layer-wise invertibility is attractive for it maximally reduces the memory 
footprint of CNN training by bypassing the local bottleneck of architectures based on 
reversible blocks (i.e., RevNet or iRevNet). Unfortunately, we will show in this section 
that deep architectures based only on layer-wise invertibility cannot be successfully 
trained due to numerical errors preventing the model from converging to high quality 
solutions. Instead, layer-wise invertibility can be combined with reversible block-level 
invertibility to get the best of both world: reversible blocks allow for long chain of recon-
struction without numerical errors reaching critical values, while layer-wise invertibility 
is used within reversible blocks to bypass the local memory bottleneck.

Figure 10 shows the inverse reconstruction error for each layer of both architectures, 
in order to visualize these phenomenon. This figure suggests that layer-wise invertible 
architecture cannot scale with depth as numerical errors accumulate with depth. On 

(29)ǫi|2 =
|ǫy|2 × |zi|2

|y|2 ×
K
∏

i

αRev ,
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the other hand, in the case of the hybrid architecture, one can see that numerical errors 
accumulate within reversible blocks, but that the long-term trend of the SNR is stable 
due to the stable inverse operation of the reversible blocks.

Figure 11 quantifies the degradation of the inverse reconstruction for the two models. 
We found the two most impacting parameters to be the depth N of the network and the 
negative slope n of the activation function, so we show the evolution of the reconstruc-
tion errors when varying both parameters.

Finally, we investigate the impact of numerical errors on the accuracy. In order to iso-
late the impact of the numerical errors, we compare the accuracy reached by the same 
architectures with and without inverse reconstruction of the hidden layers activations. 
Without reconstruction, the hidden activation values are stored in memory along the 
forward pass, and the gradient updates are computed from the true, noiseless activation 
values. With inverse reconstructions, activation values are recovered by inverse opera-
tors during the backward pass. Hence, the only difference between both settings is the 
noise introduced by the inverse reconstructions. In Fig.  12, we show evolution of the 
accuracy with increasing depth.

In the case of the layer-wise invertible architecture: For small depths (or high negative 
slopes), in which the numerical errors are minimum, both models yield similar accuracy. 
However, as the numerical errors grow, the accuracy of the model goes down, while the 
accuracy of the ideal baseline keeps increasing, which can be seen with both depth and 
negative slopes. This loss in accuracy is the direct result of numerical errors, which pre-
vent the model from converging to higher accuracies.

Fig. 10 Evolution of the SNR through the layers of a (left) layer-wise invertible model and (right) hybrid 
architecture model. The lower the SNR is, the more important numerical errors of the inverse reconstructions 
are. The x axis corresponds to layer indices of the model: right-most values represent the top layer of the 
model, in which the least noise is observed. Left-most values represent input layers in which maximum 
levels of noise accumulate. (Left): color boxes illustrate the span of two consecutive convolutional blocks 
(convolution–normalization–activation layers). The SNR gets continuously degraded throughout each block 
of the network, resulting in numerical instabilities. (Right): color boxes illustrate consecutive reversible blocks. 
Within reversible blocks, the SNR quickly degrades due to the numerical errors introduced by invertible layers. 
However, the signal propagated to the input of each reversible block is recomputed using the reversible 
block inverse, which is much more stable. Hence, we can see a sharp decline of the SNR within the reversible 
blocks, but the SNR almost raises back to its original level at the input of each reversible block
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Fig. 11 Illustration of the impact of depth (in number of layers N) and negative slope n on the numerical 
errors of (left) the layer-wise invertible architecture and (right) the hybrid architecture. Both figures show the 
evolution of the SNR at the input layer of the network for increasing depth N on the x axis, and with different 
negative slopes n in different colors. (Left): the SNR decreases with depth until it reaches an SNR value of 1. At 
this point, the noise is of the same scale as the signal, and no learning can happen. It is impressive that with 
only four layers of depth, a negative slope of n = 0.005 reaches a SNR of 1. With such parameterization, even 
the most shallow models are not capable of learning. (Right) The hybrid architecture successfully stabilizes 
the numerical error propagation

Fig. 12 Impact of the numerical errors on the accuracy of (left) layer-wise invertible models and (right) 
hybrid architecture model. (Left): evolution of the accuracy with depth for a negative slope n = 0.2 with 
and without inverse reconstructions. Without reconstruction, the model accuracy benefits from depth. With 
inverse reconstructions, the model similarly benefits from depth as the number of layers grow from 3 to 7. 
For N > 7 , however, the accuracy sharply decreases toward lower values due to numerical errors. (Right): our 
proposed hybrid architecture greatly stabilizes the numerical errors, which results in smaller effects of the 
depth and negative slope on accuracy

Table 1 Summary of architectures with different levels of reversibility

Model Accuracy #Params Channels Pooling Mθ M′
z +M′

g M

Resnet 94.7% 3.1M 32− 64− 128− 256 Max Pooling 12.5M 1928 1.01G

RevNet 94.5% 3.1M 40− 80− 256− 320 Max Pooling 12.7M 640 348M

i-RevNet 93.8% 42.8M 32− 128− 512− 2048 Pc − Pc − Pc 171M 640 500M

RevNeXt (ours) 93.3% 3.7M 32− 128− 512− 512 [Pc ,Pc ,Pb] 14.8M 352 200M
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In the case of the hybrid architecture, the negative impacts of numerical errors 
observed in the layer-wise architecture are gone, confirming that the numerical stability 
brought by the hybrid architecture effectively stabilizes training.

5.2  Model comparison

Table  1 compares architectures with different patterns of reversibility. We called our 
model RevNeXt as a reference to both prior works and the eXtreme memory reduction 
of the RevNet architecture aimed by our work. The exact parameterization of our pro-
posed RevNeXt is given together with other architectures in Table 1.

To allow for a fair comparison, we have tweaked each architecture to keep the number 
of parameters as close as possible, with the notable exception of the i-RevNet architec-
ture. The i-Revnet pooling scheme enforces a quadratic growth of its parameters with 
each level of pooling. In order to keep the number of parameters of the i-RevNet close to 
the other baselines, we would have to drastically reduce the number of channels of lower 
layers, which we found yield poor performance. Furthermore, it should be noted that the 
i-RevNet architecture we present slightly differs from the original i-Revnet model as our 
implementation uses RevNet-like reversible modules with one module per channel split 
for similarity with the other architecture we evaluate instead of the single module used 
in the original architecture.

Our model drastically cuts the memory cost of training, which comes at the cost of 
both a small degradation in accuracy, and additional computations. The additional com-
putation requirements remain manageable though: Our hybrid architecture requires the 
computational equivalent of two additional forward passes within each backward pass.

As an illustration of applications enabled by our model, Table 2, we compare the time 
of training our proposed architecture to 93.3% on a high-end Nvidia GTX 1080Ti and a 
low-end Nvidia GTX750. The GTX750 only has 1GB of VRAM, which results in roughly 
400MB of available memory after the initialization of various frameworks. Training a 
vanilla ResNet with large batch sizes on such limited memory resources is impractical, 
while our architecture allows for efficient training.

6  Conclusion
Convolutional Neural Networks form the backbone of modern computer vision systems. 
However, the accuracy of these models comes at the cost of resource-intensive training and 
inference procedures. While tremendous efforts have been put into the optimization of the 
inference step on resource-limited device, relatively little work have focused on algorithmic 
solutions for limited resource training. In this paper, we have presented an architecture able 
to yield high accuracy classifications within very tight memory constraints. We highlighted 
several potential applications of memory-efficient training procedures, such as on-device 

Table 2 Training statistics on different hardware

GPU Accuracy Time

GTX750 93.3% 67 min

GTX 1080Ti 93.3% 35 min
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training, and illustrated the efficiency of our approach by training a CNN to 93.3% accuracy 
on a low-end GPU with only 1GB of memory.

Appendix
Proof of batch normalization results

To illustrate the mechanism through which the batch normalization inverse operation 
reduces the SNR, let us consider a toy layer with only two channels and parameters 
β = [0, 0] and γ = [1, ρ] . For simplicity, let us consider an input signal x independently 
and identically distributed across both channels with zero mean and standard deviation 
1 so that, in the forward pass, we have: 

in which we used the assumption that x is independently and identically distributed 
across both channels to factorize |x0|2 = |x1|2 = 1

2
× |x|2 in Eq. (17ad).

During the backward pass, the noisy estimate ỹ = y+ ǫy is fed back as input to the 
inverse operation. Similarly, let us suppose a noise ǫy identically distributed across both 
channels so that we have: 

(30a)y =[y0, y1]

(30b)=[x0, x1 × ρ],

(30c)|y|2 =|x0|2 + |x1|2 × ρ2

(30d)=1

2
× |x|2 + 1

2
× |x|2 × ρ2

(30e)=|x|2
2

× (1+ ρ2),

(31a)ỹ =[ỹ0, ỹ1]

(31b)=[x0 + ǫ
y
0, x1 × ρ + ǫ

y
1],

(31c)x̃ =[ỹ0,
ỹ1

ρ
]

(31d)=[x0 + ǫ
y
0, x1 +

ǫ
y
1

ρ
],

(31e)ǫx =x̃ − x
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Using the above formulation, the SNR reduction factor α can be expressed as: 

In essence, numerical instabilities in the inverse computation of the batch normali-
zation layer arise from the fact that the signal across different channels i and j are 
amplified by different factors γi and γj . While the signal amplification in the forward 
and inverse path cancel out each other ( x = f −1(f (x)) ), the noise only gets amplified 
in the backward pass.

In the above demonstration, we have used a toy parameterization of the invertible 
batch normalization layer to illustrate the mechanism behind the SNR degradation. 
For arbitrarily parameterized batch normalization layers, the SNR degradation factor 
becomes: 

Assuming a noise ǫy , equally distributed across all channels, the noise ratio can be 
computed as follows: 

(31f )=[ǫy0,
ǫ
y
1

ρ
]

(31g)|ǫx|2 =|ǫy0|2 +
|ǫy1|2
ρ2

,

(31h)=1

2
× |ǫy|2 + 1

2
× |ǫy|2

ρ2

(31i)=|ǫy|2
2

× (1+ 1

ρ2
).

(32a)α = snri

snro

(32b)= |x|2
|ǫx|2 × |ǫy|2

|y|2

(32c)= 4

(1+ 1

ρ2
)× (1+ ρ2)

.

(33a)α = snri

snro

(33b)= |x|2
|ǫx|2 × |ǫy|2

|y|2

(33c)=|x|2
|y|2 × |ǫy|2

|ǫx|2 .
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Assuming input x following a Gaussian distribution with channel-wise mean x̂i and 
variance ẋi , the SNR reduction factor α becomes: 

Proof of activation function results

The analysis of the numerical errors yielded by the invertible Leaky ReLU follows a 
similar reasoning as the toy batch normalization example with an additional subtlety: 
Similar to the toy batch normalization example, we can think of the leaky ReLU as artifi-
cially splitting the input x across two different channels, one channel leaving the output 
unchanged and one channel that divides the input by a factor n during the forward pass 
and multiplies its output by a factor n during the backward pass.

(34a)ỹi =γi ×
xi − x̂i√
ẋi + ǫ

+ βi + ǫ
y
i ,

(34b)x̃i =(
√

ẋi + ǫ)× ỹi − βi

γi
+ x̂i

(34c)=xi +
√
ẋi + ǫ

γi
× ǫ

y
i ,

(34d)ǫxi =x̃i − xi

(34e)=
√
ẋi + ǫ

γi
× ǫ

y
i ,

(34f )
|ǫy|2
|ǫx|2 = |ǫy|2

|ǫy|2
c ×

∑

i
ẋi

2

γ 2
i

(34g)= c
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i
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ẋi+ǫ
γi

.

(35a)
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2
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i )
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|y|2 × |ǫy|2

|ǫx|2

(35d)=
∑

i(x̂
2
i + ẋi)

∑

i(γ
2
i + β2

i )
× c

∑

i

√
ẋi+ǫ
γi

.



Page 28 of 30Hascoet et al. EURASIP Journal on Image and Video Processing          (2023) 2023:1 

However, these artificial channels are defined by the sign of the input and output during 
the forward and backward pass, respectively. Hence, we need to consider the cases in which 
the noise flips the sign of the output activations, which leads to different behaviors of the 
invertible Leaky ReLU across four cases: 

where the index np, for instance, represents negative activations whose reconstructions 
have become positive due to the added noise. The signal-to-noise ratio of the input and out-
puts can be expressed, respectively, as:

In the case where y ≫ ǫy , the probability of sign flips ( ynp , ypn ) is negligible, so that the 
output signal y is evenly split along ypp and ynn . In this regime, the degradation of the SNR 
obeys a formula similar to the toy batch normalization example: 

(36a)y =











ynn if ŷ < 0 and y < 0

ynp if ŷ >= 0 and y < 0

ypp if ŷ >= 0 and y >= 0

ypn if ŷ < 0 and y >= 1

,

(37a)y =[ypp, ynn]

(37b)=[xpp,
xnn

n
],

(37c)|y|2 =1

2
× |x|2 + 1

2
× |x|2

n2

(37d)=|x|2
2

× (1+ 1

n2
).

(38a)ỹ =[ỹpp, ỹnn]

(38b)=[xpp + ǫ
y
pp,

xnn

n
+ ǫ

y
nn],

(38c)x̃ =[ỹpp, ỹnn × n]

(38d)=[xpp + ǫ
y
pp, xnn + ǫ

y
nn × n],

(38e)ǫx =x̃ − x

(38f )=[ǫypp, ǫynn × n],

(38g)|ǫx|2 =1

2
× |ǫy|2 + 1

2
× |ǫy|2 × n2
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Using the above formulation, the signal-to-noise ratio reduction factor α can be 
expressed as: 

When the noise reaches an amplitude similar to or greater than the activation signal, 
the effects of sign flips complicate the equation. However, in this regime, the signal-to-
noise ratio becomes too low for training to converge, as numerical errors prevent any 
useful weight update, so we leave the problem of characterizing this regime open.
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