
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Hascoet et al.
EURASIP Journal on Image and Video Processing (2023) 2023:1
https://doi.org/10.1186/s13640-022-00601-w

EURASIP Journal on Image
and Video Processing

Reversible designs for extreme memory cost
reduction of CNN training
Tristan Hascoet1*† , Quentin Febvre3†, Weihao Zhuang1, Yasuo Ariki1,2 and Tetsuya Takiguchi1,2

Abstract

Training Convolutional Neural Networks (CNN) is a resource-intensive task that requires
specialized hardware for efficient computation. One of the most limiting bottlenecks
of CNN training is the memory cost associated with storing the activation values of
hidden layers. These values are needed for the computation of the weights’ gradi-
ent during the backward pass of the backpropagation algorithm. Recently, reversible
architectures have been proposed to reduce the memory cost of training large CNN
by reconstructing the input activation values of hidden layers from their output dur-
ing the backward pass, circumventing the need to accumulate these activations in
memory during the forward pass. In this paper, we push this idea to the extreme and
analyze reversible network designs yielding minimal training memory footprint. We
investigate the propagation of numerical errors in long chains of invertible operations
and analyze their effect on training. We introduce the notion of pixel-wise memory cost
to characterize the memory footprint of model training, and propose a new model
architecture able to efficiently train arbitrarily deep neural networks with a minimum
memory cost of 352 bytes per input pixel. This new kind of architecture enables
training large neural networks on very limited memory, opening the door for neural
network training on embedded devices or non-specialized hardware. For instance, we
demonstrate training of our model to 93.3% accuracy on the CIFAR10 dataset within 67
minutes on a low-end Nvidia GTX750 GPU with only 1GB of memory.

Keywords: CNN, Reversibility, Memory optimization, Numerical analysis

1 Introduction
Over the last few years, Convolutional Neural Networks (CNN) have enabled unprec-
edented progress on a wide array of computer vision tasks. One disadvantage of these
approaches is their resource consumption: training deep models within a reasonable
amount of time requires special Graphical Processing Units (GPU) with numerous
cores and large memory capacity. Given the practical importance of these models, a lot
of research effort has been directed towards algorithmic and hardware innovations to
improve their resource efficiency such as low-precision arithmetic [1], network pruning
for inference [2], or efficient stochastic optimization algorithms [3].

†Tristan Hascoet and Quentin
Febvre contributed equally

*Correspondence:
tristan@people.kobe-u.ac.jp

1 Kobe University, 1-1
Rokkodaicho, Nada Ward,
Kobe 657-0013, Japan
2 Association for Advanced
Science and Technology, 1-1
Rokkodaicho, Nada Ward,
Kobe 657-0013, Japan
3 IMT Atlantique, 655 Avenue du
Technopôle, Plouzané 29280,
France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-022-00601-w&domain=pdf
http://orcid.org/0000-0002-8160-6076

Page 2 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

In this paper, we focus on a particular aspect of resource efficiency: optimizing the
memory cost of training CNNs. We envision several potential benefits from the ability to
train large neural networks within limited memory:

Democratization of deep learning research: Training large CNNs requires special
GPUs with large memory capacity. Typical desktop GPUs memory capacity is too small
for training large CNNs. As a result, getting into deep learning research comes with the
barrier cost of either buying specialized hardware or renting live instances from cloud
service providers. Reducing the memory cost of deep model training would allow train-
ing deep networks on standard graphic cards without the need for specialized hardware,
effectively removing this barrier cost. In this paper, we demonstrate efficient training of
a CNN on the CIFAR10 dataset (93.3% accuracy within 67 min) on an Nvidia GTX750
with only 1 GB of memory.

On-device training: With mobile applications, a lot of attention has been given to opti-
mize inference on edge devices with limited computation resources. Training state-of-
the-art CNN on embedded devices, however, has still received little attention. Efficient
on-device training is a challenging task for the underlying power efficiency, computa-
tion and memory optimization challenges it involves. As such, CNN training has thus
far been relegated to large cloud servers, and trained CNNs are typically deployed to
embedded device fleets over the network. On-device training would allow bypassing
these server–client interactions over the network. We can think of several potential
applications of on-device training, including:

• Life-long learning: Autonomous systems deployed in evolving environments like
drones, robots or sensor networks might benefit from continuous life-long learning
to adapt to their changing environment. On-device training would enable such appli-
cation without the expensive communication burden of having edge devices contin-
uously sending their data to remote servers over the network. It would also provide
resilience to network failures in critical application scenarios.

• In privacy-critical applications such as biometric mobile phone authentication, users
might not want to have their data sent over the network. On-device training would
allow fine-tuning recognition models on local data without sending sensitive data
over the network.

In this work, we propose an architecture with minimal training memory cost require-
ments which enables training within the tight memory constraints of embedded devices.

Research in optimization: Recent works on stochastic optimization algorithms have
highlighted the benefits of large batch training [4, 5]. For example, in Imagenet, lin-
ear speed-ups in training have been observed with increasing batch sizes up to tens
of thousands of samples [5]. Optimizing the memory cost of CNN training may allow
further research on the optimization trade-offs of large batch training. For small data-
sets like MNIST or CIFAR10, we are able to process the full dataset in 14 and 18 GB of
memory, respectively. Although large batch training on such small dataset is very com-
putationally inefficient with current stochastic optimization algorithms [5], the ability
to process the full dataset in one pass allows to easily train CNNs on the true gradient
of the error. Memory optimization techniques have the potential to facilitate research

Page 3 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

on optimization techniques outside the realm of Stochastic Gradient Descent to be
investigated.

In this paper, we build on recent works on reversible networks [6, 7] and ask the ques-
tion: how far can we reduce CNN training memory cost using reversible designs with
minimal impact on the accuracy and computational cost? To do so, we take as a start-
ing point the Resnet-18 architecture and analyze its training memory requirements. We
then analyze the memory cost reduction of invertible designs successively introduced
in the RevNet and iRevNet architectures. We identify the memory bottleneck of such
architectures, which leads us to introduce a layer-wise invertible architecture. However,
we observe that layer-wise invertible networks accumulate numerical errors across their
layers, which leads to numerical instabilities impacting model accuracy. We character-
ize the accumulation of numerical errors within long chains of revertible operations and
investigate their effect on model accuracy. To mitigate the impact of these numerical
errors on the model accuracy, we propose both a reparameterization of invertible layers
and a hybrid architecture combining the benefits of layer-wise and residual-block-wise
reversibility to stabilize training.

Our main result is to present a new architecture that allows to efficiently train a CNN
with the minimal memory cost of 352 bytes per pixel. We demonstrate the efficiency of
our method by efficiently training a model to 93.3% accuracy on the CIFAR10 dataset
within 67 minutes on a low-end Nvidia GTX750 with only 1 GB of VRAM.

2 Related work
2.1 Reversibility

Reversible network designs have been proposed for various purposes including genera-
tive modeling, visualization, solving inverse problems, or theoretical analysis of hidden
representations.

Flow-based generative models use analytically invertible transformations to compute
the change of variable formula. Invertibility is either achieved through channel parti-
tioning schemes (NICE [8] Real-NVP [9]), weight matrix factorization (GLOW [10]) or
constraining layer architectures to easily invertible unitary operations (Normalization
flows [11])

Neural ODEs [12] take a drastically different take on invertibility: They leverage the
analogy between residual networks and the Euler method to define continuous hid-
den state systems. The conceptual shift from a finite set of discrete transformations to a
continuous regime gives them invertibility for free. The computational efficiency of this
approach, however, remains to be demonstrated.

The RevNet model [6] was inspired by the Real-NVP generative model. They adapt
the idea of channel partitioning and propose an efficient architecture for discrimina-
tive learning. The iRevNet [7] model builds on the RevNet architecture: they propose
to replace the irreversible max-pooling operation with an invertible operation that
reshapes the hidden activation states so as to compensate the loss of spatial resolu-
tion by an increase in the channel dimension. By preserving the volume of activations,
their pooling operation allows for exact reconstruction of the inverse. In their origi-
nal work, the authors focus on the analysis of the representations learned by invertible
models rather than resource efficiency. From a resource optimization point of view, one

Page 4 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

downside of their method is that the proposed invertible pooling scheme drastically
increases the number of channels in upper layers. As the size of the convolution kernel
weights grows quadratically in the number of channels, the memory cost associated with
storing the model weights becomes a major memory bottleneck. We address this issue
in our proposed architecture. In [13], the authors use these reversible architectures to
study undesirable invariances in feature space.

In [14], the authors propose a unified architecture performing well on both genera-
tive and discriminative tasks. They enforce invertibility by regularizing the weights of
residual blocks so as to guarantee the existence of an inverse operation. However, the
computation of the inverse operation is performed with power iteration methods which
are not optimal from a computational perspective.

Finally, [15] propose to reconstruct the input activations of normalization and activa-
tion layers using their inverse function during the backward pass. We propose a similar
method for layer-wise invertible networks. However, as their model does not invert con-
volution layers, it does not feature long chains of invertible operations so that they do
not need to account for numerical instabilities. Instead, our proposed model features
long chains of invertible operations so that we need to characterize numerical errors in
order to stabilize training.

2.2 Resource efficiency

Research into resource optimization of CNNs covers a wide array of techniques, most of
which are orthogonal to our work. We briefly present some of these works.

On the architectural side, Squeezenet [16] was first proposed as an efficient neural
architecture reducing the number of model parameters while maintaining high clas-
sification accuracy. MobileNet [17] uses depth-wise separable convolutions to further
reduce the computational cost of inference for embedded device applications.

Network pruning [2] is a set of techniques developed to decrease the model weight
size and computational complexity. Network pruning works by removing the network
weights that contribute the least to the model output. Pruning deep models has been
shown to drastically reduce the memory cost and computational cost of inference with-
out significantly hurting model accuracy. Although pruning has been concerned with
optimization of the resource inference, the recently proposed lottery ticket hypothesis
[18] has shown that specifically pruned networks could be trained from scratch to high
accuracy. This may be an interesting and complementary line of work to investigate in
the future to reduce training memory costs.

Low precision arithmetic has been proposed as a mean to reduce both memory con-
sumption and computation time of deep learning models. Mixed precision training
[19] combines FP16 with FP32 operations to avoid numerical instabilities due to either
overflow or underflow. For inference, integer quantization [1, 20] has been shown to
drastically improve the computation and memory efficiency and has been successfully
deployed on both edge devices and data centers. Integrating mixed-precision training to
our proposed architecture would allow us to further reduce training memory costs.

Accumulating the weights’ gradients over multiple batches is used to increase the
effective batch size during the training with constant memory requirements. Although

Page 5 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

this method allows for training on arbitrary large batch sizes, it does not reduce the
memory requirements for training on a single batch.

Most related to our work, gradient checkpointing was introduced as a mean to reduce
the memory cost of deep neural network training. Gradient checkpointing, first intro-
duced in [21], trades off memory for computational complexity by storing only a subset
of the activations during the forward pass. During the backward pass, missing activa-
tions are recomputed from the stored activations as needed by the backpropagation
algorithm. Follow-up work [22] has since built on the original gradient checkpointing
algorithm to improve this memory/computation trade-off. However, reversible models
like RevNet have been shown to offer better computational complexity than gradient
checkpointing, at the cost of constraining the model architecture to invertible residual
blocks.

3 Preliminaries
In this section, we analyze the memory footprint of training architectures with differ-
ent reversibility patterns. We start by introducing some notations and briefly review the
backpropagation algorithm in order to characterize the training memory consumption
of deep neural networks. In our analysis, we use a Resnet-18 as a reference baseline and
analyze its training memory footprint. We then gradually augment the baseline archi-
tecture with reversible designs and analyze their impact on computation and memory
consumption.

3.1 Backpropagation and notations

Let us consider a model F made of N sequential layers trained to minimize the error e
defined by a loss function L for an input x and ground-truth label ȳ :

During the forward pass, each layer fi takes as input the activations zi−1 from the pre-
vious layer and outputs activation features zi = fi(zi−1) , with z0 = x and zN = y being
the input and output of the network, respectively.

During the backward pass, the gradient of the loss with respect to the hidden activa-
tions are propagated backward through the layers of the networks using the chain rule
as:

Before propagating the loss gradient with respect to its input to the previous layer, each
parameterized layer computes the gradient of the loss with respect to its parameters. In
vanilla SGD, for a given learning rate η , the weight gradients are subsequently used to
update the weight values as:

(1a)F : x → y,

(1b)y = fN ◦ . . . ◦ f2 ◦ f1(x),

(1c)e = L(y, ȳ).

(2)
δL

δzi−1

= δL

δzi
× δzi

δzi−1

.

Page 6 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

However, the analytical form of the weight gradients are functions of the layer’s input
activations zi−1 . In convolution layers, for instance, the weight gradients can be com-
puted as the convolution of the input activation by the output’s gradient:

Hence, computing the derivative of the loss with respect to each layer’s parameters θi
requires knowledge of the input activation values zi−1 . In the standard backpropagation
algorithm, hidden layers activations are stored in memory upon computation during the
forward pass. Activations accumulate in live memory buffers until used for the weight
gradients computation in the backward pass. Once the weight gradients computed in the
backward pass, the hidden activation buffers can be freed from live memory. However,
the accumulation of activation values stored within each parameterized layer along the
forward pass creates a major bottleneck in GPU memory.

The idea behind reversible designs is to constrain the network architecture to feature
invertible transformations. Doing so, activations zi in lower layers can be recomputed
through inverse operations from the activations zj>i of higher layers. In such architec-
tures, activation do not need to be kept in memory during the forward pass as they can
be recomputed from higher layer activations during the backward pass, effectively free-
ing up the GPU live memory.

3.2 Memory footprint

We denote the memory footprint of training a neural network as a value M in bytes.
Given an input x and ground-truth label ȳ , the memory footprint represents the peak
memory consumption during an iteration of training including the forward and back-
ward pass. We divide the total training memory footprint M into several memory cost
factors: the cost Mθ of storing the model weights, the hidden activations Mz , and the
hidden activations’ gradients Mg:

We choose not to include the cost of storing the gradients of the weights in our analysis
since their accumulation has more to do with the implementation details of current dif-
ferentiable frameworks than with algorithmic necessity. In the following subsections, we
detail the memory footprint of existing architectures with different reversibility patterns.
To help us formalize these memory costs, we further introduce the following notations:
let n(x) denote the number of elements in a tensor x, i.e., if x is an h× w matrix, then
n(x) = h× w . Let bpe be the memory cost in bytes per elements of a given precision
so that the actual memory cost for storing an h× w matrix is n(x)× bpe . For instance,

(3a)
δL

δθi
= δL

δzi
× δzi

δθi
,

(3b)θi ← θi − η × δL

δθi
.

(4)
δL

δθi
= zi−1 ⋆

δL

δzi
.

(5)M = Mθ +Mz +Mg .

Page 7 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

FP32 tensors have a memory cost per element bpe = 4 . We use bs to denote the batch
size, and ci to denote the number of channels at layer i.

It should be noted that the memory cost of the activations and the gradients are pro-
portional to the size of the input image batch: training a CNN on twice larger input
image batch sizes or twice higher resolution requires twice more memory. Thus, these
costs, for a given architecture, are better characterized in bytes per input pixels, which
we denote M′

z and M′
g , respectively, and are defined by:

The memory cost of the weights, on the other hand, is independent of the input size
and thus reported in bytes.

3.3 Vanilla ResNet

The architecture of a vanilla ResNet-18 is shown in Fig. 1. Vanilla ResNets do not use
reversible computations so that the input activations of all parameterized layers need to

(6a)M′
z =

Mz

bs × h× w
,

(6b)M′
g =

Mg

bs× h× w
.

Fig. 1 Illustration of the ResNet-18 architecture and its memory requirements. Modules contributing to the
peak memory consumption are shown in red. These modules contribute to the memory cost by storing
their input in memory. The green annotation represents the extra memory cost of storing the gradient in
memory. The peak memory consumption happens in the backward pass through the last convolution so that
this layer is annotated with an additional gradient memory cost. At this step of the computation, all lower
parameterized layers have stored their input in memory, which constitutes the memory bottleneck

Page 8 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

be accumulated in memory during the forward pass for the computation of the weight
gradients to be done in the backward pass.

Hence the peak memory footprint of training a vanilla ResNet happens at the begin-
ning of the backward pass when the top layer’s activation gradients need to be stored in
memory in addition to the full stack of hidden activation values.

Let us denote by P ⊂ N the subset of parameterized layers of a network F (i.e., convolu-
tions and batch normalization layers, excluding activation functions and pooling layers).
The memory cost associated with storing the hidden activation values is given by:

where hi and wi represent the spatial dimensions of the activation values at layer i. hi
and wi are determined by the input image size h× w and the pooling factor pi of layer i,
so we can factor out both the spatial dimensions and the batch size from this equation,
yielding the memory cost per input pixel:

The memory footprint of the weights is given by:

The memory footprint of the gradients correspond to the size of the gradient buffers at
the time of peak memory usage. In a vanilla ResNet18 model, this peak memory usage
happens during the backward pass through the last convolution of the network. Hence,
the memory footprint of the gradients correspond to the memory cost of storing the gra-
dients with respect to either the input or the output of this layer.

(7a)Mz =
i∈P

n(zi)× bpe

(7b)=
∑

i∈P
bs × ci × hi × wi × bpe,

(8a)Mz =
∑

i∈P
bs × h× w × pi × ci × bpe

(8b)= bs × h× w ×
∑

i∈P
pi × ci × bpe,

(8c)M′
z =

∑

i∈P
pi × ci × bpe.

(9)Mθ =
∑

i∈P
n(θi)× bpe.

(10a)Mg = max(n(gN−1), n(gN))× bpe

(10b)= h× w × bs × pi ×max(cN−1, cN)× bpe,

(10c)M′
g = pi ×max(cN−1, cN)× bpe.

Page 9 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

Figure 1 illustrates the peak memory consumption of a ResNet-like architecture. For
a ResNet parameterized following Table 1, the peak memory consumption can then be
computed as:

(11d)
For example, a training iteration over a typical batch of 32 images of resolution

240× 240 requires 12.5 MB of memory to store the model weights and 3.8 GB of mem-
ory to store the hidden layers activations and gradients for a total of M = 3.81 GB of
VRAM. The memory cost of the hidden activations is thus the main memory bottle-
neck of training a ResNet as the cost associated with the model weights is negligible in
comparison.

3.4 RevNet

The RevNet architecture introduces reversible blocks as drop-in replacements of the
residual blocks of the ResNet architecture. Reversible blocks have analytical inverses
that allow for the computation of both their input and hidden activation values from
the value of their output activations. Two factors create memory bottlenecks in training
RevNet architectures, which we refer to as the local and global bottlenecks.

First, the RevNet architecture features non-volume preserving max-pooling lay-
ers, for which the inverse cannot be computed. As these layers do not have analytical
inverses, their input must be stored in memory during the forward pass for the recon-
struction of lower layer’s activations to be computed during the backward pass. We refer
to the memory cost associated with storing these activations as the global bottleneck,
since these activations need to be accumulated during the forward pass through the full
architecture.

The local memory bottleneck has to do with the synchronization of the reversible
block computations: while activations values are computed by a forward pass through
the reversible block modules, gradients computations flow backward through these
modules so that the activations and gradient computations cannot be performed simul-
taneously. Figure 2 illustrates the process of backpropagating through a reversible block:
first, the input activation values of the parameterized hidden layers within the revers-
ible blocks are recomputed from the output. Once the full set of activation have been
computed and stored in GPU memory, the backpropagation of the gradients through the
reversible block can begin. We refer to the accumulation of the hidden activation values
within the reversible block as the local memory bottleneck.

For a typical parameterization of a RevNet, as summarized in Table 1, the local bottleneck
of lower layers actually outweighs the global memory bottleneck introduced by non-revers-
ible pooling layers. Indeed, as the spatial resolution decreases with pooling operations,
the cost associated with storing the input activations of higher layers becomes negligible

(11a)M = Mθ +Mz +Mg

(11b)= Mθ + (M′
z +M′

g)× (h× w × bs)

(11c)= 12.5 ∗ 106 + 1928× (h× w × bs).

Page 10 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

compared to the cost of storing activation values in lower layers. Hence, surprisingly, the
peak memory consumption of the RevNet architecture, as illustrated in Fig. 3, happens in
the backward pass through the first reversible block, in which the local memory bottleneck

Fig. 2 Illustration of the backpropagation process through a reversible block. In the forward pass (left),
activations are propagated forward from top to bottom. The activations are not kept in live memory as they
are to be recomputed in the backward pass so no memory bottleneck occurs. The backward pass is made
of two phases: first the hidden and input activations are recomputed from the output through an additional
forward pass through both modules (middle). Once the activations recomputed, the activations gradient
are propagated backward through both modules of the reversible blocks (right). Because the activation and
gradient computations flow in opposite directions through both modules, both computations cannot be
efficiently overlapped, which results in the local memory bottleneck of storing all hidden activations within
the reversible block before the gradient backpropagation step

Fig. 3 Illustration of the Revnet architecture and its memory consumption. Modules contributing to the
peak memory consumption are shown in red. The peak memory consumption happens during the backward
pass through the first reversible block. At this step of the computations, all hidden activations within the
reversible block are stored in memory simultaneously

Page 11 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

is maximum. For the architecture described in Table 1, the peak memory consumption can
be computed as:

Following our previous example, a RevNet architecture closely mimicking the ResNet-18
architecture requires M = 1.19 GB of VRAM for a training iteration over batch of 32
images of resolution 240× 240.

Finally, the memory savings allowed by the reversible block come with the additional
computational cost of computing the hidden activations during the backward pass. As
noted in the original paper, this computational cost is equivalent to performing one addi-
tional forward pass.

3.5 iRevNet

The iRevNet model builds on the RevNet architecture: they replace the irreversible max-
pooling operation with an invertible operation that reshapes the hidden activation states so
as to compensate for the loss of spatial resolution by an increase in the channel dimension.
As such, the iRevNet architecture is fully invertible, which alleviates the global memory
bottleneck of the RevNet architecture.

This pooling operation works by stacking the neighboring elements of the pooling regions
along the channel dimension, i.e., for a 2D pooling operation with 2× 2 pooling window,
the number of output channels is four times the number of input channels. Unfortunately,
the size of a volume-preserving convolution kernel grows quadratically in the number of
input channels:

Consider an iRevNet network with initial channel size 32. After three levels of 2× 2 pool-
ing, the effective channel size becomes 32× 43 = 2048 . A typical 3× 3 convolution layer
kernel for higher layers of such network would have n(θ) = 20482 × 3× 3 = 37M param-
eters. At this point, the memory cost of the network weights Mθ becomes an additional
memory bottleneck.

Furthermore, the iRevNet architecture does not address the local memory bottleneck of
the reversible blocks. Figure 4 illustrates such architecture. For an initial channel size of 32,
as summarized in Table 1, the peak memory consumption is given by:

(12a)M = Mθ +Mz +Mg

(12b)= (Mθ + (M′
z +M′

g)× (h× w × bs)

(12c)= 12.7× 10
6 + 640× (h× w × bs).

(13a)M(θ) = cin × cout × kh × kw

(13b)= c2 × kh × kw .

(14a)M = Mθ +Mz +Mg

(14b)= Mθ + (M′
z +M′

g)× (h× w × bs)

Page 12 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

Training such an architecture for an iteration over batches of 32 images of resolu-
tion 240× 240 would require M = 1.35 GB of VRAM. In the next section, we intro-
duce both layer-wise reversibility, and a variant on this pooling operations to address
the local memory bottleneck of reversible blocks, and the weight memory bottleneck,
respectively.

4 Method
RevNet and iRevNet architectures implement reversible transformations at the level
of residual blocks. As we have seen in the previous section, the design of these revers-
ible blocks creates a local memory bottleneck as all hidden activations within a revers-
ible block need to be computed before the gradients are backpropagated through the
block. In order to circumvent this local bottleneck, we introduce layer-wise invert-
ible operations in section 4.2. However, these invertible operations introduce numeri-
cal errors, which we characterize in the following subsections. In section 5, we will
show that these numerical errors lead to instabilities that degrade the model accu-
racy. Hence, in "Hybrid architecture", we propose a hybrid model combining layer-
wise and residual block-wise reversible operations to stabilize training while resolving
the local memory bottleneck at the cost of a small additional computational cost.
Section 4.1 starts by motivating the need for, and the methodology of, our numerical
error analysis.

(14c)= 171× 10
6 + 640× (h× w × bs).

Fig. 4 Illustration of the i-Revnet architecture and its memory consumption. The peak memory consumption
happens during the backward pass through the top reversible block. In addition to this local memory
bottleneck, the cost of storing the top layers weights (in orange) becomes a new memory bottleneck as the
weight kernel size grows quadratically in the number of channels

Page 13 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

4.1 Numerical error analysis

Invertible networks are defined as the composition of invertible operations. During the
backward pass, each operation is supposed to reconstruct its input x given the value of its
output y using its inverse function:

In reality, however, the output of the network is an approximation of its true analytical
value due to floating point numbers’ precision ŷ = y+ ǫy . Hence, the noisy input x̂ recon-
structed by the inverse operation contains a noise ǫx due to the noise ǫy in the output, and
the error propagates through the successive inverse computations.

The operation f may either refer to an individual layer, as is the case for the layer-wise
invertible architecture we propose in this paper, or at the level of residual blocks as for the
reversible blocks proposed in RevNet or iRevNet.

For each operation, we can compute the signal-to-noise ratio (SNR) of its output and
input, respectively:

We are interested in characterizing the factor α of reduction of the SNR through the
inverse reconstruction:

Indeed, given a layer i in a network, its input zi will be reconstructed from the noisy
network output ŷ by the composition of its upstream layers. Hence, the noise ǫi in the
reconstructed and noisy input ẑi can be computed as:

(15a)y = f (x),

(15b)x = f −1(y).

(16a)x̂ = f −1(y+ ǫy),

(16b)x̂ = (x + ǫx),

(16c)ǫx = x − f −1(y+ ǫy).

(17a)snro =
|y|2
|ǫy|2 ,

(17b)snri =
|x|2
|ǫx|2 .

(18)α = snri

snro
.

(19a)ẑi = zi + ǫi,

(19b)ẑi = f −1
i ◦ f −1

i+1 ◦ . . . ◦ f
−1
N (ŷ),

Page 14 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

As zi is used in the computation of layer i’s weights’ gradients according to Eq. 4, accu-
mulated errors yield noisy gradients which prevent the network from converging as the
SNR reaches certain levels. Hence, it is important to characterize the factor α for the dif-
ferent invertible layers proposed below.

4.2 Layer‑wise invertibility

In this section, we present invertible layers that act as drop-in replacement for con-
volution, batch normalization, pooling and non-linearity layers. We then character-
ize the numerical instabilities arising from the invertible batch normalization and
non-linearities.

4.2.1 Invertible batch normalization

As batch normalization is not a bijective operation, it does not admit an analytical
inverse. However, the inverse reconstruction of a batch normalization layer can be real-
ized with minimal memory cost. Given first- and second-order moment parameters β
and γ , the forward f and inverse f −1 operation of an invertible batch normalization layer
can be computed as follows:

where x̂ and ẋ represent the mean and variance of x, respectively. Hence, the input acti-
vation x can be recovered from y through f −1 at the minimal memory cost of storing the
input activation statistics x̂ and ẋ.

The formula for the SNR reduction factor of the batch normalization is given below:

in which c represents the number of channels. The full proof of this formula is given in
the Appendix. The only assumption made by this proof is that both the input x and out-
put noise ǫy are identically distributed across all channels, which we have found to hold
true in practice.

In essence, numerical instabilities in the inverse computation of the batch normaliza-
tion layer arise from the fact that the signal across different channels i and j are amplified
by different factors γi and γj . While the signal amplification in the forward and inverse
path cancel out each other (x = f −1(f (x))), the noise only gets amplified in the back-
ward pass, which degrades the reconstructed signal.

(19c)|ǫi|2 =
|ǫy|2 × |zi|2

|y|2 ×
N
∏

i

αj .

(20a)y = f (x) = γ × x − x̂√
ẋ + ǫ

+ β ,

(20b)x = f −1(y, x̂, ẋ) = (
√
ẋ + ǫ)× y− β

γ
+ x̂,

(21)α =
∑

i(x̂
2
i + ẋi)

∑

i(γ
2
i + β2

i)
× c

∑

i

√
ẋi+ǫ
γi

,

Page 15 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

We verify the validity of equation (22ac) by empirically evaluating the different α
ratio yielded by a toy parameterization of the batch normalization using only two
channels with parameters and γ = [1, ρ] . This toy parameterization has been used by
the proof in the Appendix. The factor ρ there represents the imbalance in the multi-
plicative factor between both channels. Figure 5 shows the expected evolution of α
through our toy layer for different values of the factor ρ . and find it to closely match
the theoretical results we derived.

Finally, we propose the following modification, introducing the hyperparameter ǫi ,
to the invertible batch normalization layer:

The introduction of the ǫi hyperparameter serves two purposes: first, it stabilizes
the numerical errors described above by lower bounding the smallest γ parameters.
Second, it prevents numerical instabilities that would otherwise arise from the inverse
computation as γ parameters tend towards zero.

(22a)y = f (x) = |γ + ǫi| ×
x − x̂√
ẋ + ǫ

+ β ,

(22b)x = f −1(y) = (
√
ẋ + ǫ)× y− β

|γ + ǫi|
+ x̂.

Fig. 5 Illustration of the numerical errors arising from batch normalization layers. Comparison of the
theoretical and empirical evolution of the α ratio for different ρ values in our toy example. Empirical values
were computed for a Gaussian input signal with zero mean and standard deviation 1 and a white Gaussian
noise of standard deviation 10−5

Page 16 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

4.2.2 Invertible activation function

A good invertible activation function must be bijective (to guarantee the existence of an
inverse function) and non-saturating (for numerical stability). For these properties, we
focus our attention on Leaky ReLUs whose forward f and inverse f −1 computations are
defined, for a negative slope parameter n, as follows:

As derived in the Appendix, and following a similar proof to the batch normalization, we
find the below formula for the SNR reduction factor:

Hence numerical errors can be controlled by setting the value of the negative slope n. As
n tends towards 1, α converges to 1, yielding minimum signal degradation. However, as
n tends towards 1, the network tends toward a linear behavior, which hurts the model
expressivity. Figure 6 shows the evolution of the SNR degradation α for different negative

(23a)y = f (x) =
{

x, if x > 0

x/n, otherwise

(23b)x = f −1(y) =
{

y, if y > 0

y× n, otherwise
.

(24)α = 4

(1+ 1

n2
)× (1+ n2)

.

Fig. 6 Illustration of the numerical errors arising from invertible activation layers. Comparison of the
theoretical and empirical evolution of the α ratio for different negative slopes n. Empirical values were
computed for a Gaussian input signal with zero mean and standard deviation 1 and a white Gaussian noise of
standard deviation 10−5

Page 17 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

slopes n; and, in section 5, we investigate the impact of the negative slope parameter on
the model accuracy.

It should be noted that this equation only holds for the regime |y|2 ≫ |ǫy|2 . When the
noise reaches an amplitude similar to or greater than the activation signal, this equation no
longer holds. However, in this regime, the signal-to-noise ratio becomes too low for train-
ing to converge, as numerical errors prevent any useful weight update. We have thus left the
problem of characterizing this regime open.

4.2.3 Invertible convolutions

Invertible convolution layers can be defined in several ways. The inverse operation of a con-
volution is often referred to as deconvolution, and is defined for a subspace of the kernel
weight space.

However, deconvolutions are computationally expensive and prone to numerical errors.
Instead, we choose to implement invertible convolutions using the channel partitioning
scheme of the reversible block for its simplicity, numerical stability and computational effi-
ciency. Hence, invertible convolutions, in our architecture, can be seen as minimal revers-
ible blocks in which both modules consist of a single convolution. Gomez et al. [6] found
the numerical errors introduced by reversible blocks to have no impact on the model accu-
racy. Similarly, we found reversible blocks extremely stable yielding negligible numerical
errors compared to the invertible Batch Normalization αRev ≪ αBN and Leaky ReLU layers
αRev ≪ αLReLU.

4.2.4 Pooling

In [7], the authors propose an invertible pooling operation that operates by stacking the
neighboring elements of the pooling regions along the channel dimension. As noted in sec-
tion 3.5, the increase in channel size at each pooling level induces a quadratic increase in the
number of parameters of upstream convolution, which creates a new memory bottleneck.

To circumvent this quadratic increase in the memory cost of the weight, we propose a
new pooling layer that stacks the elements of neighboring pooling regions along the batch
size instead of the channel size. We refer to both kind of pooling as channel pooling Pc and
batch pooling Pb , respectively, depending on the dimension along which activation features
are stacked. Given a 2× 2 pooling region and an input activation tensor x of dimensions
bs× c × h× w , where bs refers to the batch size, c to the number of channels and h× w
to the spatial resolution, the reshaping operation performed by both pooling layers can be
formalized as follows:

(25a)Pc :x → y

(25b):Rbs×c×h×w → R
bs×4c× h

2
×w

2

(25c)Pb :x → y

(25d):Rbs×c×h×w → R
4bs×c× h

2
×w

2 .

Page 18 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

Channel pooling gives us a way to perform volume-preserving pooling operations
while increasing the number of channels at a given layer of the architecture, while batch
pooling gives us a way to perform volume-preserving pooling operations while keeping
the number of channel constant. By alternating between channel and batch pooling, we
can control the number of channels at each pooling level of the model’s architecture.

As this pooling operation only performs a reshaping between input and output, it does
not induce any numerical error: αPool = 1.

4.3 Layer‑wise invertible architecture

Putting together the above building blocks, Fig. 7 illustrates a layer-wise invertible archi-
tecture. The peak memory usage for a training iteration of this architecture, as param-
eterized in Table 1, can be computed as follows:

Training an iteration over a typical batch of 32 images with resolution 240× 240
would require M = 590 MB of VRAM. Similar to the RevNet architecture, the recon-
struction of the hidden activations by inverse transformations during the backward pass
comes with an additional computational cost similar to a forward pass.

(26a)M = Mθ +Mz +Mg

(26b)= Mθ + (M′
z +M′

g)× (h× w × bs)

(26c)= 29.6× 10
6 + 320× (h× w × bs).

Fig. 7 Illustration of a layer-wise invertible architecture and its memory consumption

Page 19 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

As analyzed in the previous section, the numerical errors in this architecture are
dominated by Batch Normalization and Leaky ReLU layers. Following equation 19, the
numerical error associated with the activations at a given layer i in this architecture can
thus be approximated by:

in which N represents the number of Batch Normalization and Leaky ReLU layers
between the layer i and the output.

4.4 Hybrid architecture

In section 5.1, we saw that layer-wise activation and normalization layers degrade the
signal-to-noise ratio of the reconstructed activations. In "Impact of numerical stability",
we will quantify the accumulation of numerical errors through long chains of layer-wise
invertible operations and show that numerical errors negatively impact model accuracy.

To prevent these numerical instabilities, we introduce a hybrid architecture, illustrated
in Fig. 8, combining reversible residual blocks with layer-wise invertible functions. Con-
ceptually, the role of the residual-level reversible block is to reconstruct the input acti-
vation of residual blocks with minimal errors, while the role of the layer-wise invertible
layers is to efficiently recompute the hidden activations within the reversible residual
blocks at the same time as the gradient propagates to circumvent the local memory bot-
tleneck of the reversible module.

The backward pass through these hybrid reversible blocks is illustrated in Fig. 9
and proceeds as follows: first, the input x is computed from the output y through

(27)ǫi|2 =
|ǫy|2 × |zi|2

|y|2 ×
N
∏

i

(αLReLU × αBN),

Fig. 8 Illustration of a hybrid architecture and its peak memory consumption

Page 20 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

the analytical inverse of the reversible block. These computations are made without
storing the hidden activation values of the sub-modules. Second, the gradient of the
activations are propagated backward through the reversible of the block modules. As
each layer within these modules is invertible, the hidden activation values are com-
puted using the layer-wise inverse along the gradient.

The analytical inverse of the residual-level reversible blocks is used to propagate
hidden activations with minimal reconstruction error to the lower modules, while
layer-wise inversion allows us to alleviate the local bottleneck of the reversible block
by computing the hidden activation values together with the backward flow of the gra-
dients. As layer-wise inverses are only used for hidden feature computations within
the scope of the reversible block, and reversible blocks are made of relatively short
chains of operations, numerical errors do not accumulate up to a damaging degree.

The peak memory consumption of our proposed architecture, as illustrated in Fig. 8
and parameterized in Table 1, can be computed as:

Training an iteration over batch of 32 images of resolution 240× 240 would require
M = 648 MB of VRAM.

(28a)M = Mθ +Mz +Mg

(28b)= Mθ + (M′
z +M′

g)× (h× w × bs)

(28c)= 14.8× 10
6 + 352× (h× w × bs).

Fig. 9 Illustration of the backpropagation process through a reversible block of our proposed hybrid
architecture. In the forward pass (left), activations are propagated forward from top to bottom. The
activations are not kept in live memory as they are to be recomputed in the backward pass so that no
memory bottleneck occurs. The backward pass is made of two phases: first the input activations are
recomputed from the output using the reversible block analytical inverse (middle). This step allows to
reconstruct the input activations with minimal reconstruction error. During this step, hidden activations are
not kept in live memory so as to avoid the local memory bottleneck of the reversible block. Once the input
activation recomputed, the gradients are propagated backward through both modules of the reversible
blocks (right). During this second phase, hidden activations are recomputed backward through each module
using the layer-wise inverse operations, yielding minimal memory footprint

Page 21 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

It should be noted, however, that this architecture adds an extra computational cost
as both the reversible block inverse and layer-wise inverse need to be computed. Hence,
instead of one additional forward pass, as in the RevNet and layer-wise architectures,
our hybrid architecture comes with a computational cost equivalent to performing two
additional forward passes during the backward pass.

Following equation 19, the numerical error associated with the activations at a given
layer i in this architecture are given by:

in which K represents the number of reversible blocks between the layer i and the
output.

Comparing this equation to equation 27, the stability of this architecture is due to the
following two factors: first the number of reversible blocks K is typically two to three
times smaller than the number of layers N as a reversible block is typically made of sev-
eral convolutions: K < N . Second, and most importantly, the SNR reduction factor is
much smaller in reversible blocks than in Batch Normalization αRev ≪ αBN and Leaky
ReLU layers αRev ≪ αLReLU.

5 Results and discussion
This section is organized in two parts: first, we start by analyzing numerical errors aris-
ing in both the layer-wise invertible and hybrid architectures. Second, we compare our
hybrid architecture to existing models.

All our experiments use the CIFAR10 dataset as a benchmark. The CIFAR10 dataset
is complex enough to require efficient architectures to reach high accuracy, yet small
enough to enable us to rapidly iterate over different architectural designs.

Unless stated otherwise, all models were trained for 50 epochs of stochastic gradient
descent with cyclical learning rate and momentum [23] with minimal image augmenta-
tion. The code used to produce the results is available at the link given in the “Availability
of data and materials" section.

5.1 Impact of numerical stability

The idea of layer-wise invertibility is attractive for it maximally reduces the memory
footprint of CNN training by bypassing the local bottleneck of architectures based on
reversible blocks (i.e., RevNet or iRevNet). Unfortunately, we will show in this section
that deep architectures based only on layer-wise invertibility cannot be successfully
trained due to numerical errors preventing the model from converging to high quality
solutions. Instead, layer-wise invertibility can be combined with reversible block-level
invertibility to get the best of both world: reversible blocks allow for long chain of recon-
struction without numerical errors reaching critical values, while layer-wise invertibility
is used within reversible blocks to bypass the local memory bottleneck.

Figure 10 shows the inverse reconstruction error for each layer of both architectures,
in order to visualize these phenomenon. This figure suggests that layer-wise invertible
architecture cannot scale with depth as numerical errors accumulate with depth. On

(29)ǫi|2 =
|ǫy|2 × |zi|2

|y|2 ×
K
∏

i

αRev ,

Page 22 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

the other hand, in the case of the hybrid architecture, one can see that numerical errors
accumulate within reversible blocks, but that the long-term trend of the SNR is stable
due to the stable inverse operation of the reversible blocks.

Figure 11 quantifies the degradation of the inverse reconstruction for the two models.
We found the two most impacting parameters to be the depth N of the network and the
negative slope n of the activation function, so we show the evolution of the reconstruc-
tion errors when varying both parameters.

Finally, we investigate the impact of numerical errors on the accuracy. In order to iso-
late the impact of the numerical errors, we compare the accuracy reached by the same
architectures with and without inverse reconstruction of the hidden layers activations.
Without reconstruction, the hidden activation values are stored in memory along the
forward pass, and the gradient updates are computed from the true, noiseless activation
values. With inverse reconstructions, activation values are recovered by inverse opera-
tors during the backward pass. Hence, the only difference between both settings is the
noise introduced by the inverse reconstructions. In Fig. 12, we show evolution of the
accuracy with increasing depth.

In the case of the layer-wise invertible architecture: For small depths (or high negative
slopes), in which the numerical errors are minimum, both models yield similar accuracy.
However, as the numerical errors grow, the accuracy of the model goes down, while the
accuracy of the ideal baseline keeps increasing, which can be seen with both depth and
negative slopes. This loss in accuracy is the direct result of numerical errors, which pre-
vent the model from converging to higher accuracies.

Fig. 10 Evolution of the SNR through the layers of a (left) layer-wise invertible model and (right) hybrid
architecture model. The lower the SNR is, the more important numerical errors of the inverse reconstructions
are. The x axis corresponds to layer indices of the model: right-most values represent the top layer of the
model, in which the least noise is observed. Left-most values represent input layers in which maximum
levels of noise accumulate. (Left): color boxes illustrate the span of two consecutive convolutional blocks
(convolution–normalization–activation layers). The SNR gets continuously degraded throughout each block
of the network, resulting in numerical instabilities. (Right): color boxes illustrate consecutive reversible blocks.
Within reversible blocks, the SNR quickly degrades due to the numerical errors introduced by invertible layers.
However, the signal propagated to the input of each reversible block is recomputed using the reversible
block inverse, which is much more stable. Hence, we can see a sharp decline of the SNR within the reversible
blocks, but the SNR almost raises back to its original level at the input of each reversible block

Page 23 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

Fig. 11 Illustration of the impact of depth (in number of layers N) and negative slope n on the numerical
errors of (left) the layer-wise invertible architecture and (right) the hybrid architecture. Both figures show the
evolution of the SNR at the input layer of the network for increasing depth N on the x axis, and with different
negative slopes n in different colors. (Left): the SNR decreases with depth until it reaches an SNR value of 1. At
this point, the noise is of the same scale as the signal, and no learning can happen. It is impressive that with
only four layers of depth, a negative slope of n = 0.005 reaches a SNR of 1. With such parameterization, even
the most shallow models are not capable of learning. (Right) The hybrid architecture successfully stabilizes
the numerical error propagation

Fig. 12 Impact of the numerical errors on the accuracy of (left) layer-wise invertible models and (right)
hybrid architecture model. (Left): evolution of the accuracy with depth for a negative slope n = 0.2 with
and without inverse reconstructions. Without reconstruction, the model accuracy benefits from depth. With
inverse reconstructions, the model similarly benefits from depth as the number of layers grow from 3 to 7.
For N > 7 , however, the accuracy sharply decreases toward lower values due to numerical errors. (Right): our
proposed hybrid architecture greatly stabilizes the numerical errors, which results in smaller effects of the
depth and negative slope on accuracy

Table 1 Summary of architectures with different levels of reversibility

Model Accuracy #Params Channels Pooling Mθ M′
z +M′

g M

Resnet 94.7% 3.1M 32− 64− 128− 256 Max Pooling 12.5M 1928 1.01G

RevNet 94.5% 3.1M 40− 80− 256− 320 Max Pooling 12.7M 640 348M

i-RevNet 93.8% 42.8M 32− 128− 512− 2048 Pc − Pc − Pc 171M 640 500M

RevNeXt (ours) 93.3% 3.7M 32− 128− 512− 512 [Pc ,Pc ,Pb] 14.8M 352 200M

Page 24 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

In the case of the hybrid architecture, the negative impacts of numerical errors
observed in the layer-wise architecture are gone, confirming that the numerical stability
brought by the hybrid architecture effectively stabilizes training.

5.2 Model comparison

Table 1 compares architectures with different patterns of reversibility. We called our
model RevNeXt as a reference to both prior works and the eXtreme memory reduction
of the RevNet architecture aimed by our work. The exact parameterization of our pro-
posed RevNeXt is given together with other architectures in Table 1.

To allow for a fair comparison, we have tweaked each architecture to keep the number
of parameters as close as possible, with the notable exception of the i-RevNet architec-
ture. The i-Revnet pooling scheme enforces a quadratic growth of its parameters with
each level of pooling. In order to keep the number of parameters of the i-RevNet close to
the other baselines, we would have to drastically reduce the number of channels of lower
layers, which we found yield poor performance. Furthermore, it should be noted that the
i-RevNet architecture we present slightly differs from the original i-Revnet model as our
implementation uses RevNet-like reversible modules with one module per channel split
for similarity with the other architecture we evaluate instead of the single module used
in the original architecture.

Our model drastically cuts the memory cost of training, which comes at the cost of
both a small degradation in accuracy, and additional computations. The additional com-
putation requirements remain manageable though: Our hybrid architecture requires the
computational equivalent of two additional forward passes within each backward pass.

As an illustration of applications enabled by our model, Table 2, we compare the time
of training our proposed architecture to 93.3% on a high-end Nvidia GTX 1080Ti and a
low-end Nvidia GTX750. The GTX750 only has 1GB of VRAM, which results in roughly
400MB of available memory after the initialization of various frameworks. Training a
vanilla ResNet with large batch sizes on such limited memory resources is impractical,
while our architecture allows for efficient training.

6 Conclusion
Convolutional Neural Networks form the backbone of modern computer vision systems.
However, the accuracy of these models comes at the cost of resource-intensive training and
inference procedures. While tremendous efforts have been put into the optimization of the
inference step on resource-limited device, relatively little work have focused on algorithmic
solutions for limited resource training. In this paper, we have presented an architecture able
to yield high accuracy classifications within very tight memory constraints. We highlighted
several potential applications of memory-efficient training procedures, such as on-device

Table 2 Training statistics on different hardware

GPU Accuracy Time

GTX750 93.3% 67 min

GTX 1080Ti 93.3% 35 min

Page 25 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

training, and illustrated the efficiency of our approach by training a CNN to 93.3% accuracy
on a low-end GPU with only 1GB of memory.

Appendix
Proof of batch normalization results

To illustrate the mechanism through which the batch normalization inverse operation
reduces the SNR, let us consider a toy layer with only two channels and parameters
β = [0, 0] and γ = [1, ρ] . For simplicity, let us consider an input signal x independently
and identically distributed across both channels with zero mean and standard deviation
1 so that, in the forward pass, we have:

in which we used the assumption that x is independently and identically distributed
across both channels to factorize |x0|2 = |x1|2 = 1

2
× |x|2 in Eq. (17ad).

During the backward pass, the noisy estimate ỹ = y+ ǫy is fed back as input to the
inverse operation. Similarly, let us suppose a noise ǫy identically distributed across both
channels so that we have:

(30a)y =[y0, y1]

(30b)=[x0, x1 × ρ],

(30c)|y|2 =|x0|2 + |x1|2 × ρ2

(30d)=1

2
× |x|2 + 1

2
× |x|2 × ρ2

(30e)=|x|2
2

× (1+ ρ2),

(31a)ỹ =[ỹ0, ỹ1]

(31b)=[x0 + ǫ
y
0, x1 × ρ + ǫ

y
1],

(31c)x̃ =[ỹ0,
ỹ1

ρ
]

(31d)=[x0 + ǫ
y
0, x1 +

ǫ
y
1

ρ
],

(31e)ǫx =x̃ − x

Page 26 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

Using the above formulation, the SNR reduction factor α can be expressed as:

In essence, numerical instabilities in the inverse computation of the batch normali-
zation layer arise from the fact that the signal across different channels i and j are
amplified by different factors γi and γj . While the signal amplification in the forward
and inverse path cancel out each other (x = f −1(f (x))), the noise only gets amplified
in the backward pass.

In the above demonstration, we have used a toy parameterization of the invertible
batch normalization layer to illustrate the mechanism behind the SNR degradation.
For arbitrarily parameterized batch normalization layers, the SNR degradation factor
becomes:

Assuming a noise ǫy , equally distributed across all channels, the noise ratio can be
computed as follows:

(31f)=[ǫy0,
ǫ
y
1

ρ
]

(31g)|ǫx|2 =|ǫy0|2 +
|ǫy1|2
ρ2

,

(31h)=1

2
× |ǫy|2 + 1

2
× |ǫy|2

ρ2

(31i)=|ǫy|2
2

× (1+ 1

ρ2
).

(32a)α = snri

snro

(32b)= |x|2
|ǫx|2 × |ǫy|2

|y|2

(32c)= 4

(1+ 1

ρ2
)× (1+ ρ2)

.

(33a)α = snri

snro

(33b)= |x|2
|ǫx|2 × |ǫy|2

|y|2

(33c)=|x|2
|y|2 × |ǫy|2

|ǫx|2 .

Page 27 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

Assuming input x following a Gaussian distribution with channel-wise mean x̂i and
variance ẋi , the SNR reduction factor α becomes:

Proof of activation function results

The analysis of the numerical errors yielded by the invertible Leaky ReLU follows a
similar reasoning as the toy batch normalization example with an additional subtlety:
Similar to the toy batch normalization example, we can think of the leaky ReLU as artifi-
cially splitting the input x across two different channels, one channel leaving the output
unchanged and one channel that divides the input by a factor n during the forward pass
and multiplies its output by a factor n during the backward pass.

(34a)ỹi =γi ×
xi − x̂i√
ẋi + ǫ

+ βi + ǫ
y
i ,

(34b)x̃i =(
√

ẋi + ǫ)× ỹi − βi

γi
+ x̂i

(34c)=xi +
√
ẋi + ǫ

γi
× ǫ

y
i ,

(34d)ǫxi =x̃i − xi

(34e)=
√
ẋi + ǫ

γi
× ǫ

y
i ,

(34f)
|ǫy|2
|ǫx|2 = |ǫy|2

|ǫy|2
c ×

∑

i
ẋi

2

γ 2
i

(34g)= c
∑

i

√
ẋi+ǫ
γi

.

(35a)
|x|2
|y|2 =

∑

i |xi|2
∑

i |yi|2

(35b)=
∑

i(x̂
2
i + ẋi)

∑

i(γ
2
i + β2

i)
,

(35c)α =|x|2
|y|2 × |ǫy|2

|ǫx|2

(35d)=
∑

i(x̂
2
i + ẋi)

∑

i(γ
2
i + β2

i)
× c

∑

i

√
ẋi+ǫ
γi

.

Page 28 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

However, these artificial channels are defined by the sign of the input and output during
the forward and backward pass, respectively. Hence, we need to consider the cases in which
the noise flips the sign of the output activations, which leads to different behaviors of the
invertible Leaky ReLU across four cases:

where the index np, for instance, represents negative activations whose reconstructions
have become positive due to the added noise. The signal-to-noise ratio of the input and out-
puts can be expressed, respectively, as:

In the case where y ≫ ǫy , the probability of sign flips (ynp , ypn) is negligible, so that the
output signal y is evenly split along ypp and ynn . In this regime, the degradation of the SNR
obeys a formula similar to the toy batch normalization example:

(36a)y =











ynn if ŷ < 0 and y < 0

ynp if ŷ >= 0 and y < 0

ypp if ŷ >= 0 and y >= 0

ypn if ŷ < 0 and y >= 1

,

(37a)y =[ypp, ynn]

(37b)=[xpp,
xnn

n
],

(37c)|y|2 =1

2
× |x|2 + 1

2
× |x|2

n2

(37d)=|x|2
2

× (1+ 1

n2
).

(38a)ỹ =[ỹpp, ỹnn]

(38b)=[xpp + ǫ
y
pp,

xnn

n
+ ǫ

y
nn],

(38c)x̃ =[ỹpp, ỹnn × n]

(38d)=[xpp + ǫ
y
pp, xnn + ǫ

y
nn × n],

(38e)ǫx =x̃ − x

(38f)=[ǫypp, ǫynn × n],

(38g)|ǫx|2 =1

2
× |ǫy|2 + 1

2
× |ǫy|2 × n2

Page 29 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

Using the above formulation, the signal-to-noise ratio reduction factor α can be
expressed as:

When the noise reaches an amplitude similar to or greater than the activation signal,
the effects of sign flips complicate the equation. However, in this regime, the signal-to-
noise ratio becomes too low for training to converge, as numerical errors prevent any
useful weight update, so we leave the problem of characterizing this regime open.

Abbreviations
CNN Convolutional Neural Network
SNR Signal-to-noise ratio
GPU Graphical Processing Unit
ResNet Residual network
RevNet Reversible network

Acknowledgements
At the time of this writing, the only contributors to the content of this work are the authors. We would be happy to thank
reviewers for useful feedback.

Author contributions
T.H and Q.F equally contributed to the investigation and implementation presented in this work. T.T and Y.A provided
advice on the research, and W.Z provided figures and modifications as suggested by the reviewers. All authors have read
and approved the final version of the manuscript.

Funding
This work was supported by a scholarship MEXT from the Japanese Ministry of Education, Culture, Sports, Science,
and Technology. A part of this study is subsidized by JSPS Grant-in-Aid for Scientific Research and Research granted
JP 17K00236. A part of this study is subsidized by JSPS Grant-in-Aid for Scientific Research and Research granted JP
19K24344 and JP 20K19823. This work was supported in part by PRESTO, JST (Grant No. JPMJPR15D2).

Availability of data and materials
The data used in this work are publicly available online. The code used for the experiments is available on GitHub at the
following address: https:// github. com/ Trist Has/ rever sibil ity_ paper

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 14 May 2019 Accepted: 29 November 2022

References
 1. B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D. Kalenichenko, Quantization and training of

neural networks for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713 (2018)

(38h)=|ǫy|2
2

× (1+ n2).

(39a)α = snri

snro

(39b)= |x|2
|ǫx|2 × |ǫy|2

|y|2

(39c)= 4

(1+ 1

n2
)× (1+ n2)

.

https://github.com/TristHas/reversibility_paper

Page 30 of 30Hascoet et al. EURASIP Journal on Image and Video Processing (2023) 2023:1

 2. P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neural networks for resource efficient infer-
ence. arXiv preprint arXiv: 1611. 06440 (2016)

 3. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. arXiv preprint arXiv: 1412. 6980 (2014)
 4. C.J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, G.E. Dahl, Measuring the effects of data parallelism on

neural network training. arXiv preprint arXiv: 1811. 03600 (2018)
 5. S. McCandlish, J. Kaplan, D. Amodei, O. Dota Team, An empirical model of large-batch training. arXiv preprint arXiv:

1812. 06162 (2018)
 6. A.N. Gomez, M. Ren, R. Urtasun, R.B. Grosse, The reversible residual network: backpropagation without storing

activations. In: Advances in Neural Information Processing Systems, pp. 2214–2224 (2017)
 7. J.-H. Jacobsen, A. Smeulders, E. Oyallon, i-revnet: Deep invertible networks. arXiv preprint arXiv: 1802. 07088 (2018)
 8. L. Dinh, D. Krueger, Y. Bengio, Nice: Non-linear independent components estimation. arXiv preprint arXiv: 1410. 8516

(2014)
 9. L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real nvp. arXiv preprint arXiv: 1605. 08803 (2016)
 10. D.P. Kingma, P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions. In: Advances in Neural Information

Processing Systems, pp. 10215–10224 (2018)
 11. D.J. Rezende, S. Mohamed, Variational inference with normalizing flows. arXiv preprint arXiv: 1505. 05770 (2015)
 12. T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations. In: Advances in Neural

Information Processing Systems, pp. 6571–6583 (2018)
 13. J.-H. Jacobsen, J. Behrmann, R. Zemel, M. Bethge, Excessive invariance causes adversarial vulnerability. arXiv preprint

arXiv: 1811. 00401 (2018)
 14. J. Behrmann, D., Duvenaud, J.-H. Jacobsen, Invertible residual networks. arXiv preprint arXiv: 1811. 00995 (2018)
 15. S. Rota Bulò, L. Porzi, P. Kontschieder, In-place activated batchnorm for memory-optimized training of dnns. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5639–5647 (2018)
 16. F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x

fewer parameters and < 0.5 mb model size. arXiv preprint arXiv: 1602. 07360 (2016)
 17. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704. 04861 (2017)
 18. J. Frankle, M. Carbin, The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint arXiv:

1803. 03635 (2018)
 19. P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh,

et al.: Mixed precision training. arXiv preprint arXiv: 1710. 03740 (2017)
 20. S. Wu, G. Li, F. Chen, L. Shi, Training and inference with integers in deep neural networks. arXiv preprint arXiv: 1802.

04680 (2018)
 21. J. Martens, I. Sutskever, Training deep and recurrent networks with hessian-free optimization. In: Neural Networks:

Tricks of the Trade, pp. 479–535. Springer, (2012)
 22. T. Chen, B. Xu, C. Zhang, C. Guestrin, Training deep nets with sublinear memory cost. arXiv preprint arXiv: 1604. 06174

(2016)
 23. L.N. Smith, N. Topin, Super-convergence: Very fast training of neural networks using large learning rates. arXiv pre-

print arXiv: 1708. 07120 (2017)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1811.03600
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1802.07088
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1811.00401
http://arxiv.org/abs/1811.00995
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1802.04680
http://arxiv.org/abs/1802.04680
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1708.07120

	Reversible designs for extreme memory cost reduction of CNN training
	Abstract
	1 Introduction
	2 Related work
	2.1 Reversibility
	2.2 Resource efficiency

	3 Preliminaries
	3.1 Backpropagation and notations
	3.2 Memory footprint
	3.3 Vanilla ResNet
	3.4 RevNet
	3.5 iRevNet

	4 Method
	4.1 Numerical error analysis
	4.2 Layer-wise invertibility
	4.2.1 Invertible batch normalization
	4.2.2 Invertible activation function
	4.2.3 Invertible convolutions
	4.2.4 Pooling

	4.3 Layer-wise invertible architecture
	4.4 Hybrid architecture

	5 Results and discussion
	5.1 Impact of numerical stability
	5.2 Model comparison

	6 Conclusion
	Acknowledgements
	References

