
Weakly supervised spatial–temporal 
attention network driven by tracking 
and consistency loss for action detection
Jinlei Zhu*  , Houjin Chen, Pan Pan and Jia Sun 

1 Introduction
In video processing tasks, motion gives rise to blurring, the camera is often defocused, 
and the video may be affected by a variety of poses or serious occlusion; therefore, the 
temporal information plays an important role.

It is especially costly and time consuming to annotate every target location in video 
frames when the network works with a spatial–temporal attention mechanism. The 
performance is also important in particular applications. This study proposes a human 
action tube detection method based on a location weakly supervised spatial–temporal 
attention mechanism.

As shown in Fig. 1, the source domain has accurate person location and action cat-
egory labels in the frames, and the target domain only has inaccurate action temporal 
position labels in the video.
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The main contributions of this paper include two points. (1) On the source data set, 
the manuscript constructs a new multi-loss spatiotemporal attention convolution net-
work based on the source data set, which has target location and classification annota-
tion. (2) In the target domain, the manuscript introduces the internal tracking loss and 
neighborhood consistency loss. The pre-training model is used to train the target data 
set, and there are only inaccurate action time positions. Although this is a location-
unsupervised classification-supervised method, the mAP performance outperforms typ-
ical weakly supervised methods, and even shows comparable results with some recent 
fully supervised methods.

Since the proposed method uses pre-trained model and amount of weakly labeled data 
in the target domain, it is a typical weakly supervised learning method. The basic idea of 
the method is as the follows:

First, we introduce a novel location weakly supervised learning network model with a 
spatial–temporal attention mechanism for action tube detection. The framework struc-
ture clearly differs from the state-of-the-art methods.

Second, we introduce an internal tracking loss and neighbor-consistency loss for 
weakly supervised learning based on video sequences for which only the action classi-
fication temporal label is needed. This is the first study on tracker and consistency loss 
applied in location weakly supervised situations with a spatial–temporal–attention 
mechanism for action tube detection.

Third, we also visualize the activation maps, which reveal the intrinsic reason behind 
the higher performance of the proposed method.

2  Related works
Video processing methods have progressed through high-efficiency coding [1], detecting 
and object tracking [2], image retrieval [3], image enhancement [4, 5] and image com-
positing [6] in many applications. Many supervised methods exist in the action detec-
tion field. Popular detection methods such as YOLO [7] and SSD [8] are mainly used in 
representative multi-scale end-to-end models for static images. Considering the impor-
tance of temporal information, Trans [9] first proposed a C3D model that introduced 
local connection and weight sharing features from a 2D convolution to video sequence 
processing. Although the calculation parameters of U-Net [10] based on 3D-CNN are 

Fig. 1 Source domain has accurate person location and action category labels in the frames, and the target 
domain only has inaccurate action temporal position labels in the video.
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relatively large, the performance of video processing was greatly improved compared 
with R-CNN [11, 12]. I3D [13] uses a dual stream fusion model structure in which 2D 
and 3D convolutions are fused to implement the migration of Image-Net and other 
static image data to a 3D video stream processing model. Sun [14] decomposed a 3D 
convolution into a 2D convolution in the spatial direction and a 1D convolution in the 
time direction. This notably improves the computational efficiency; however, massive 
iterative training on video data is still required. To reduce the computational complexity, 
P3D [15] combines three different module structures. In ResNet(2+1)D [16], new con-
volution kernels were explored and the C3D model was optimized in terms of param-
eters and running speed. Video-based 3D multi-scale detection [17, 18] has been widely 
used in video target recognition, and many open-source projects have validated its per-
formance. Nevertheless, the algorithms are significantly affected by background factors 
owing to the lack of target focus. With the development of deep learning technology, 
multi-scale features and attention mechanisms of video were considered in videos for 
various applications. Popular attention mechanisms [19–21] are particularly important 
for streaming data processing in the machine-learning field, for example, task-adaptive 
attention method [22] used in image captioning and self-attention and multi-feature 
fusion method [23] used in face recognition. Inspired by human vision, the Institute for 
Human-Machine Communication from Munich University Germany proposed a fast 
and real-time video action detection method (You Only Watch Once, YOWO) [24], 
which achieves the highest efficiency at present. It introduced a target attention mecha-
nism based on the video keyframe in the 2D-3D fusion model through a single-stage 
network. This constitutes the fundamental advantage of previous research results.

There are also some weakly supervised or unsupervised studies in this field. 
UntrimmedNets [25] introduced a classification module for predicting the classifica-
tion score for each snippet, and a selection module to select relevant video segments. 
In addition, STPN [26] added sparsity loss and class-specific proposals. AutoLoc [27] 
introduced the outer-inner contrastive loss to effectively predict temporal boundaries. 
W-TALC [28] and Islam and Radke [29] incorporated distance metric learning strategies, 
and proposed a novel average aggregation module and latent discriminative probabili-
ties to reduce the difference between the most salient regions and the others. TSM [30] 
modeled each action instance as a multi-phase process to effectively characterize action 
instances. WSGN [31] assigned a weight to each frame prediction based on both local 
and global statistics. DGAM [32] used a conditional variational auto-encoder to separate 
the attention, action, and non-action frames. CleanNet [33] introduced an action pro-
posal evaluator that provides pseudo-supervision by leveraging the temporal contrast in 
snippets. 3C-Net [34] adopted three loss terms to ensure separability, enhance discrimi-
nability, and delineate adjacent action sequences. Moreover, BaS-Net [35] and Nguyen 
et  al. [36] modeled background activity by introducing an auxiliary background class. 
However, none of these approaches explicitly resolve the issue of modeling an action 
instance in its entirety. Nanan [37] proposed a spatial-channel filter, and Liu et al. [38] 
proposed a multi-branch network in which each branch predicts distinctive action parts. 
HAM-Net [39] hides the most discriminative parts of a video instead of random parts. 
Our method includes a novel location-interactive weakly supervised learning network 
model with a spatial–temporal attention mechanism for action tube detection in which 
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an internal interactive location tracker and consistency loss is used for weakly super-
vised learning based on video sequence for which only the action classification temporal 
label is needed.

3  Methodology
3.1  Framework overview

The motivation of this study is to propose an attention network with fewer object bound-
ing box annotations while still achieving comparable results with some recent fully 
supervised methods. The classification attention maps may be disturbed by the moving 
background objects, some input data can be predicted well while others are poor, but we 
cannot decide in advance which video clip or keyframe to choose as input. Therefore, 
to enhance the robustness of detection, the network need to filter the noise by tracking 
the objects to see if they exist continuously and always have high confidence value in the 
previous frames. The overall framework is shown in Fig. 2.

1) Overall framework overview. According to Fig.  2, in source domain, we trained the 
newly designed multi-loss spatial–temporal attention–convolution network on the first 
data set, which has both location and classification annotations. In target domain, we intro-
duced an internal tracking loss and neighbor-consistency loss for weakly supervised learn-
ing based on video sequence for which only action classification temporal labels are needed 
and trained the network with the pre-trained model on the second data set, which only 
has classification annotations. To ensure the continuity of the target in the video sequence, 
tracking regularization loss is calculated by a tracker between the tracking location and 

Fig. 2 Overall framework. In source domain, we trained the network on the first data set, which has both 
location and classification annotations. In target domain, we trained the network with the pre-trained model 
on the second data set, which only has action classification temporal annotations. To ensure the continuity of 
the target in the video sequence, Tracking-regularization loss is calculated by a tracker between the tracking 
location and network’s predicted location. The neighbor-consistency loss makes the features of objects more 
closer between neighbors in the video
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network’s predicted location. Intuitively, the features’ cosine distance between the neigh-
bors is closer in the same video clip, so we introduce neighbor consistency loss in the 
model.

2) Baseline framework overview. As shown in Fig. 3, there are four branches: the branch 
no. 2 adopts a spatial attention mechanism for the object location in video frames, and 
branch no.3 uses a channel attention mechanism to fuse the previous two network branches 
to obtain the total loss. In branch No.4, The internal loss function focuses on the loss 
between the network’s predicted location and the ground truth based the video sequence.

3.2  Baseline network definition

Referring to Figs. 2 and 3, suppose that a video sequence is an input to the 3D-CNN net-
work, and the original video is sampled in time as

where X denotes the clip of video, x(t) is a frame of the video, U means that X consists of 
the set of frames, and the range of sampling time is [t0, tN−1].

The clips are fed into 3D convolutional network such as 3D-ResNeXt-50 and 
3D-ResNeXt-34 [40] and the outputs

where the ResNeXt is used to verify our model, and other 3D Convolutional Network 
backbones can also be used here. Referring to the network branch no. 2 which focuses 
on the object location in the video sequence, squeezing the tensor S50 to the tensor F01:

where (N × D
′
)×H

′ ×W
′ is the shape of the tensor F00 which has N-Frames fea-

ture-groups, each group has D′ features, and each feature is the size of H ′ ×W
′ , and 

C
′′ ×H

′ ×W
′ is the shape of the tensor F01.

(1)X = U{x(t0), x(t1), . . . , x(tN−1)}

(2)S50 = 3D_ResNeXt_34(X)

(3)S101 = 3D_ResNeXt_50(X)

(4)S50 → F00 ∈ R(N×D
′
)×H

′×W
′
→ F01 ∈ RC

′′×H
′×W

′

Fig. 3 Baseline framework. The internal loss function focuses on the loss between the network’s predicted 
location and the ground truth locations based on the video sequence
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Referring to the network branch no. 1, It is concerned with the classification of action 
tubes, we further squeeze the tensor S101 to the tensor F11:

where C ′ ×H
′ ×W

′ is the shape of the tensor F11 . Since F01 and F11 have the same fea-
ture map dimension H ′ ×W

′ , so they can be concatenated as the follows:

The network branch no. 2 only focused on the object location in the video sequence, it is 
referenced by the internal loss function marked as IL. The branch no. 1 mainly considers 
for video object behavior classification, and it is referenced by the global loss function 
marked as GL. Therefore, the network parameters can be learned like:

where θ j denotes the trainable parameter of the network model. We choose different loss 
functions according to the network branches, α(t) is the learning rate function, and � is a 
hyper-parameter.

As shown in Fig. 4, we use the Gram matrix in the neural network to solve the fusion 
problem. Here, the implementation process of CFAM is simplified as follows:

where C = C
′ + C

′′ , FA is the result of simply concatenating features of network branch 
No.1 and network branch No.2, FB is the mapping feature after 2-layer convolution, the 
Gram matrix transformer is used between FB and FC, and FD is the mapping feature of 
FC after 2-layer convolution. C∗ is the final number of features.

(5)S101 → F11 ∈ RC
′×H

′×W
′

(6){F01, F11} → FA ∈ R
C
′+C

′′
×H

′ ×W
′

(7)θ j =











θ j − α(t) ∂IL(θ)
∂θ j

, if θ jǫBranch 2 or 4

θ j − �α(t) ∂GL(θ)
∂θ j

, if θ jǫBranch 1 or 3

(8)FA ∈ R(C ′+C ′′)×H ′×W ′ → FB ∈ RC×H ′×W ′

→ FC ∈ RC×H ′×W ′ → FD ∈ RC∗×H ′×W ′

Fig. 4 It is about the details of branch no.3 shown in Fig. 3. We use Gram matrix between FB and FC. This 
figure corresponds to the formula 8 and 9
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By squeezing FB in the directions H ′ and W ′ , we then obtain the feature FF, FF ∈ RC×D 
where D = H

′ +W
′ , and the transformer between FB and FC is defined as

where β is a parameter that can be learned by the network. The reshape function trans-
forms the dimension of the value to the same size as FB. In branch no. 3, we obtain the 
feature FD just before the Softmax function affected by the global loss function.

3.3  Internal and global loss function

In the proposed network model (see Fig. 2), there are two loss functions, namely, the exter-
nal global loss function and the internal loss function, which can act on the network param-
eters using the gradient transfer mechanism. We next introduce the internal loss function 
which focuses on the loss between the predicted key-frame location and the tracking loca-
tions; then, the network can be trained under the location weakly supervised attention 
mechanism, for which only the action classification temporal label is needed.

• Loss function Part A: The action classification loss function is marked as Losscls.
• Loss function Part B: The location loss function focuses on the location loss of objects 

in the video clip. The single frame loss is marked as Lossloc , and clip loss is marked as 
Lossclip.

• Loss function Part C: The tracker predicted location loss function focuses on the track-
ing location loss with the previous video sequence, marked asLTRB.

• Loss function Part D: The neighbor consistency loss function focuses on neighbor fea-
tures’s consistency in video sequence, marked asLNCB.

1) Supervised cross-entropy loss
Suppose the image is split by an S × S grid. We use a cross-entropy function to compute 

the action classification loss marked as Losscls:

where Iobjij denotes the jth prior box of the ith grid is responsible for the object with the 
class cls; Iobjij = 1 if the object center exists in the grid; otherwise, Iobjij = 0 , S2 is the total 
number of grid cells and B denotes the total number of candidate prior boxes. Pj

i and P̂j
i 

represent the ground truth and predicted class probability in the grid cell, respectively.
2) Clip supervised-location loss
Suppose a single frame loss function defined as

(9)

FC =β · reshape
(

exp
(

Gij

)

∑C
j=1 exp

(

Gij

)
· FF

)

+ FB

with Gij =
D
∑

k=1

FFik · FFjk

(10)Losscls = −
S2
∑

i=0

B
∑

j=0

I
obj
ij

[

P
j
i log

(

P̂
j
i

)

+
(

1− P
j
i

)

log
(

1− P̂
j
i

)]
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where  Iobjij  denotes the jth prior box of the ith grid cell is responsible for the object; 
I
obj
ij = 1 if the object center exists in the grid cell; otherwise, Iobjij = 0 . S2 is the total 

number of grid cells and B denotes the total number of candidate prior boxes, and 
�co is an adjustable parameter. The object location (xi, yi, wi, hi, C

j
i) denotes the 

(center_left, center_top, width, height, confidence) of the ground-truth box, and 
(x̂

j
i , ŷ

j
i, ŵ

j
i , ĥ

j
i, Ĉ

j
i ) denotes the location and confidence of the predicted box.

Considering that the video sequence is composed of a series of frames, the video clip 
loss function can be defined as follows:

where N is the number of frames in the video clip.
3) Tacking-regularization-based loss
The tracker location loss function focuses on the loss between the tracker-predicted 

and network-calculated locations in video frames. We can use KCF [41] as a tracker, 
and other tracker methods can also be used in this study. The track loss function can be 
defined as follows:

where LocNclip denotes the target location in keyframe, which comes from output of the 
network branch no. 4. Loci+1

clip denotes the object locations in the ith frame of the clip, 
Lociclip denotes the object locations in the previous frame. Note that, Since both tracking 
and attention-based localization are not certain and either cannot be taken as ground 
truth, this term is more like internal regularization loss, we might as well call it tracking 
regularization loss here.

4) Neighbor-consistency-based loss
Intuitively, the features’ cosine distance between the neighbors is closer in the same 

video clip, and so we introduce neighbor consistency loss in the model.

(11)

Lossloc = �co

S2
∑

i=0

B
∑

j=0

I
obj
ij

[

(

xi − x̂
j
i

)2
+

(

yi − ŷ
j
i

)2
]

+

�co

S2
∑

i=0

B
∑

j=0

I
obj
ij

[

(√
wi −

√

ŵ
j
i

)2

+
(

√

hi −
√

ĥ
j
i

)2
]

−
S2
∑

i=0

B
∑

j=0

I
obj
ij

[

C
j
i log

(

Ĉ
j
i

)

+
(

1− C
j
i

)

log
(

1− Ĉ
j
i

)]

(12)Lossclip = 1

N

N−1
∑

k=0

Lossloc(k)

(13)LTRB = 1

N

N
∑

i=0

Lossclip

(

Lociclip, Tracker(Loc
i+1
clip)

)

(14)Xg = {xg ,0, ..., xg ,i, ..., xg ,N }

(15)dg ,i,j = d
c
(xg ,i, xg ,j) = f

(

xg ,i
)T

f (xg ,j)
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where xg ,i indicates the ith frame of the video clip, xg ,N specially indicates the keyframe, 
and we normally copy the (N-1)th frame of clip as the keyframe. For the gth clip in the 
batch PK, the cosine distance between all images in Xg is calculated, and f (·) means the 
target confidence feature of the image.

The distance matrix DN  is adopted to realize neighbor consistency. Intuitively, the 
distance between xg ,i and xg ,i+1 neighbors should be pulled closer. Besides, to make 
the closer neighbors get more proportions in NCB loss, a weight wi that reflects the 
contribution of the ith neighbor. If the distance between  xg ,i and xg ,i+1 is large, then 
its contribution to xg ,i is small:

To pull the distance between the xg ,i and its neighbors closer, the NCB loss can be for-
mulated as

where ǫ is the scaling parameter. NCB loss make the given object frame closer to its 
neighbors, which can further improve the stability of the model.

5) GL and IL defination
In source domain, we defined GL and IL as

where t_loc is the ground truth location in the keyframe, and p_loc is the output location 
which comes from the output of the network branch no. 3. According to (7), the internal 
loss function IL directly affects the location feature of the sequence. Therefore, we can 
obtain more attention features of the video sequence to improve the precision of action 
tube detection.

In target domain, we defined GL and IL as

where ρ is the hyper-parameter that control the importance of the NCB loss relative 
to the RAT loss. Note that the data set only has action temporal annotations in target 

(16)DN =











d0,0,1 · · · d0,i,i+1 · · · d0,N−1,N

· · · · · · · · · · · · · · ·
dg ,0,1 · · · dg ,i,i+1 · · · dg ,N−1,N

· · · · · · · · · · · · · · ·
dPK−1,0,1 · · · dPK−1,i,i+1 · · · dPK−1,N−1,N











(17)wi =







1
N

�

1− dc(xg ,i ,xg ,i+1)
�N−1

j=0 dc(xg ,j ,xg ,j+1)

�

, ∀ i ∈ {0, 1, ...,N − 2}
dc
�

xg ,N−1, xg ,N
�

, where xg ,N is the keyframe

(18)LNCB = −
N−1
∑

i=0

wilog
exp(dc

(

xg ,i, xg ,i+1

)

/ǫ)
∑N−1

i=0 exp(dc
(

xg ,i, xg ,i+1

)

/ǫ)

(19)GL = Losscls + Lossloc(p_loc, t_loc)

(20)IL = Lossclip

(21)GL = Losscls + Lossloc

(

LocN−1
clip , Tracker

(

LocNclip

))

(22)IL = LTRB + ρLNCB
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domain. The location interactive loss is computed by LTRB and LNCB based on the video 
sequence.

3.4  Parameters about the model

In network branch no. 1, a clip of the video frame sequence is fed into the 3D network 
as the input and the original video can be sampled in time. The shape of the input data is 
[N × CH ×H ×W ] , where N is the length of the clip, CH is the number of image chan-
nels, H is the height of the video image, and W is the width of the video image. If 4 frames 
of 3-channel RGB images are sampled per second, then a clip consists of 16 frames per 4 
seconds, then N = 16, CH = 3 . The tensor S101 has a shape [N ′ × C

′ ×H
′ ×W

′ ] , which 
can be squeezed by setting N ′ = 1 , H ′ = H/32 , W ′ = W /32 . Then, the feature dimen-
sion of the 3D-CNN output is squeezed and transformed into the shape [C ′ ×H

′ ×W
′ ] . 

Hence, it is easy to concatenate with the output feature of network branch no. 2, because 
they have the same single feature map shape [H ′ ×W

′ ].
In network branch no. 2, we input the same video frame sequence as in network 

branch no.1, and adopt the 3D-CNN network to generate the location feature. Given that 
the two network branches are calculated in parallel, this method does not required addi-
tional computing time. The tensor S50 has the shape [N × D

′ ×H
′ ×W

′ ] . We squeeze 
the tensor by setting D′ = 1 , H ′ = H/32 , W ′ = W /32 , and the output shape of network 
branch no. 2 is [C ′′ ×H

′ ×W
′ ] , where C ′′ = N × D

′ = N  . Let us assume that the learn-
ing rate function of branches no. 2 and no. 4 is α(t) acting on the back-propagation pro-
cess driven by the internal loss function. The learning rate function used in the branches 
no. 1 and no. 3 is �α(t) , where � is a constant less than 1.

In network branches no. 3 and no. 4, the location regression method partly refers to 
the idea of YOLO [7]. If the input size is 416× 416 and 32 down-sampling is used, then 
the grid size is 13× 13 . We also generate a 26× 26 feature map with 16 down-sampling, 
or a 52× 52 feature map with 8 down-sampling. Note that the higher the sampling ratio, 
the larger the feature map. In this process, the k-means method is also used to determine 
the size of the prior boxes based on the training data set, where k is the selected num-
ber. If the number of prior boxes is five, and each box has four position parameters and 
one confidence parameter, the total number of categories is NumCls, and the dimension 
of C∗ is [5× (NumCls+ 4 + 1)] in the network branch no.3. The dimension of C∗∗ is 
[5× (4 + 1)] in network branch no. 4, because the internal loss does not focus on the 
classification information. To support multi label objects, a Softmax function is used to 
predict the results.

4  Results and discussion
In this section, we first describe the experimental setup. We then conduct ablation 
studies and it shows the effectiveness of the different network parts. Next, we provide 
comparisons with several metric methods for action classification and temporal action 
location tasks, respectively. Finally, we analyzed the intrinsic reasons of performance 
improvement, including the working mechanism, attention activation maps and issues 
that need to be further studied.
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4.1  Experimental setup

We first validated our method for action classification on the J-HMDB-21 [42] and 
UCF101-24 [43] data sets. The UCF101-24 data set contains 24 action classes and 3207 
videos, with multiple possible action instances in each video. The J-HMDB-21 data set 
consists of 928 short videos with 21 action categories in daily life, where each video is 
trimmed to a single action instance across all frames. Then, we used the THUMOS14 
and ActivityNet-v1.3 data sets in the experiment of temporal action localization, where 
THUMOS14 contains all of the UCF101 actions. THUMOS14 has 13320 trimmed 
videos for training, and each video includes one action, and the data include UCF101-
24 with bounding box annotations. THUMOS14 also has 2500 untrimmed videos for 
training, each is guaranteed not to include any instance of the 101 actions, and 1010 
untrimmed videos for validation.

The image size was 412× 412 pixels. In this study, 32 down-sampling was used in 
the spatial domain to form a 13× 13 grid. To improve the generalization ability of the 
data, a spatial transformer was also used to produce a 0.1 amplitude random shift and 
10-degree intermediate random rotation in the spatial domain. A temporal transformer 
was used for random sequence extraction based on 16 frames. We used the SGD opti-
mizer with the weight decay, in which the momentum parameter, and decay weight were 
used. The initial value of the learning rate was 0.05, which linearly decreased according 
to the epoch. The hyper-parameter ρ is 0.2, � is 0.1 and ǫ is 1.0. For a batch size of 64, at 
least four TITAN GPU cards or two RTX8000 GPU cards are needed for training.

In the action classification tasks, the indicator Frame-mAP was used as a benchmark. 
Suppose x(tN−1) represents the keyframe of a video clip in (1), the whole video’s time 
range is [t0, tL−1] , and X was a clip in the video, then there were L− N  clips in the video. 
The Frame-mAP was the mAP of all of video clips on the validation dataset.

In the action temporal localization tasks, the AP of the temporal action localization 
mainly considers the localization matching rate between predicted frame localization 
and ground truth with the same classification label, so the mAP indicator can be defined 
as follows:

where Pred(k) indicates the predicted frame localization in all LN video frames, and 
real(k) indicates the ground truth. AP(cls) means the AP of single category CLS, so the 
mAP was the mean AP of all categories.

4.2  Ablation study

We performed ablation studies on the UCF101-24 and J-HMDB-21 data sets to prove 
the effectiveness of each part of the loss. We used 80% of the UCF101-24 data set for 
training. The Frame-mAP of classification is shown in Table  1. Supposing 20–100% 

(23)AP(cls) =
∑LN

k=1(Pred(k)× real(k))
∑LN

k=1 real(k)

(24)mAP = 1

CLS

CLS
∑

cls=1

AP(cls)
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usage of training data for fully supervised learning with the model in source domain. In 
target domain, we trained the network with the pre-trained model and the remaining 
data that only had classification annotations.

In Table  2 and Fig.  2, to ensure the continuity of the target in the video sequence, 
tracking-regularization loss and neighbor-consistency loss were calculated in the video. 
“U-24→J-21” means that UCF101-24 is used in source domain and J-HMDB-21 is used 
in target domain. “Baseline + xxx” means that the “xxx” loss function is used upon the 
baseline model. SCEL stands for supervised cross-entropy loss, TRBL stands for track-
ing-regularization-based loss, NCBL means neighbor-consistency-based loss.

1) Effectiveness of ALL: In the Table 1, assuming that only 30% of the data have bound-
ing-box annotations, the model can only achieve 86.8% Frame-mAP on the UCF101-24 
data set in the source domain. However, if we use the other 70% data without bound-
ing-box annotations to train the network in target domain, then Frame-mAP is 94.9%. 
It is especially costly and time consuming to annotate every target location in the video 
frames, and the Track Loss is effective if we only have few data with location labels.

2) Effectiveness of NCBL: When Baseline+SCEL+NCBL use in the training, the 
Frame-mAP performance achieved 86.3% and 90.6% on the J-HMDB-21 and UCF101-
24 data sets, respectively. The NCBL loss is used to pull closer the similar targets within 
a certain range. Unlike the TRBL loss, the NCBL loss is likely to mine the similarity of 
targets within the video sequence. It also illustrates the advantage of avoiding completely 
relying on location labels.

3) Effectiveness of TRBL: The Frame-mAP performance presents no significant differ-
ence when we choose different trackers, such as MIL [44], KCF [41] and SRDCF [45]; 
when the model uses 70% of the data for location unsupervised training, they achieved 
a performance of 94.1%, 94.9%, 95.1% on the UCF101-24 data set, respectively. This is 
because the target occupies a large proportion in the image on the target data set, and 
generally there is no occlusion.

Table 1 We used 80% of the UCF101-24 dataset for training and 20% for validation

The Frame-mAP is shown in the table. We assume 20–100% usage of training data for fully supervised learning with our 
model in source domain. In target domain, we trained the network with the pre-trained model and the remaining data that 
only has classification annotations

Domain Mode 20% 30% 50% 70% 100%

Source Full 80.7 86.8 95.4 96.5 96.7

Target Weak 93.3 94.9 96.1 96.3 -

Table 2 “U-24→J-21” means that UCF101-24 is the source domain used in source domain and 
J-HMDB-21 is the target domain used in target domain

“Baseline + xxx” means that the “xxx” loss function is used upon the baseline model. SCEL stands for supervised cross-
entropy loss, TRBL stands for tracking-regularization-based loss, NCBL means neighbor-consistency-based loss

Methods(Target) U-24→J-21 J-21→U-24

Baseline+SCEL 61.0 70.3

Baseline+SCEL+TRBL 69.3 79.0

Baseline+SCEL+NCBL 86.3 90.6

Baseline+SCEL+TRBL+NCBL 90.2 94.8
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4.3  Experimental results of action classification

We compared the proposed method with state-of-the-art methods on the UCF101-
24 and J-HMDB-21 data sets, as shown in Table 3. Using standard metrics, we pre-
sent the Frame-mAP at IOU threshold 0.5 and 16-frame clips. It can be seen that the 
proposed method outperforms the state of the art in terms of Frame-mAP, which 
is improved by 2.1% and 2.7% on the two data sets, respectively. Note that the pro-
posed method used transfer learning, which means training the network on the tar-
get domain (UCF101-24) in target domain with the pretrained model trained on the 
source domain (J-HMDB-21) in source domain, then, obtaining the Frame-mAP of 
94.8% on the UCF101-24 data set.

From Table  4, we can see that our method pertains to acceptable performance 
because of the parallel architecture mechanism consisting of a classification network 
branch No. 1 and location network branch No. 2. At the same time, because it has 
two 3D-CNN parallel computing branches, it consumes more computing resources 
than some state-of-the-art models. The comparison may not be fair without consid-
ering computing complexity, but note that, our contribution is introducing tracking 
loss and neighbor-consistency loss for action detection tasks, if the system needs high 
real-time performance, it can choose simple backbones.

Table 3 Action classification experiment

The table lists the comparison results of Frame-mAP (IOU=0.5, 16 frames clip). We compared with recent fully and weakly 
supervised methods. Note that, the proposed method is an object location-unsupervised classification-supervised attention 
network

Method Mode J-HMDB-21 UCF101-24

T-CNN [12] Full 61.3 41.4

ACT [20] Full 65.7 69.5

STEP [46] Full – 75.0

P3D-CTN [15] Full 71.1 –

I3D [47] Full 73.3 77.7

ACRN [24] Full 77.9 80.4

YOWO+LFB [24] Full 75.7 87.3

3C-Net [34] Weak 77.9 86.4

HAM-Net [39] Weak 88.1 92.1

Ours Weak 90.2 94.8

Table 4 It is about the run time and performance comparison on data set UCF101-24 on a single 
NVIDIA RTX8000 card with 16-frames video clip

For our method, ResNeXt-50 and ResNeXt-34 are used in its two 3D-CNN backbones

Method Speed(fps) Frame-mAP

P3D-CTN 28 –

I3D 30 77.7

3C-Net 45 84.4

HAM-Net 29 92.1

YOWO+LFB 38 86.4

Ours 31 94.8
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4.4  Experimental results of temporal action localization

We also conducted experiments on temporal action localization (TAL) using the pro-
posed method. Table 5 summarizes the performance comparisons between the proposed 
method and state-of-the-art methods. The table lists the comparison results in terms of 
mAP with state-of-the-art methods (16 frames clips). We compared the typical full and 
weak methods, T(IOU@0.3) indicates THUMOS14 with IOU@0.3, while T(IOU@0.5) 
indicates IOU=0.5, and A(IOU@0.5) indicates ActivityNet1.3 with IOU@0.5. Spe-
cifically, our proposed method achieves the mAP of 49.6% at IOU threshold 0.5 on 
the data set THUMOS14. Moreover, our method outperforms the weakly supervised 
TAL models, and even shows comparable results with some recent fully supervised 
TAL methods. Note that, we cannot perform the contrast experiment on the data set 
THUMOS14(UCF101), because only its sub-data set UCF101-24 has object bounding 
boxes, which means that only about 24% (3207/13320) of the THUMOS14 training data 
are available for fully supervised pretraining in source domain, and the pretrained model 
is also used in the experiment based on the ActivityNet1.3 data set.

4.5  Further analysis of the experimental results

We performed experiments for action classification and temporal action localization. 
The performance was better than recent weakly supervised methods, and even shows 
comparable results with recent fully supervised methods. We also present the activation 
maps [50] in Fig. 5, which reveal the intrinsic reason why our method has better atten-
tion performance than the state-of-the-art video action tube detection methods. Note 
the following points:

• The jump action example shows that HAM–NET’s attention mechanism is more 
likely to be disturbed by sudden or rapid object movements such as moving clouds 
and crowds of people. This is because HAM–NET’s attention mechanism is based on 
the optical flow of the video frames.

• The Walking-With-Dog action example shows that HAM–NET is more likely to 
ignore important parts of an action such as the presence of a dog in cases where the 

Table 5 Temporal action localization experiment

The table lists the comparison results of mAP (16 frames clip). We compared with typical fully and weakly supervised 
methods. T(IOU@0.3) indicates THUMOS14 with IOU@0.3, T(IOU@0.5) indicates IOU=0.5, and A(IOU@0.5) indicates 
ActivityNet with IOU@0.5. Note that, the proposed method is an object location-unsupervised classification-supervised 
attention network

Method Mode T(IOU@0.3) T(IOU@0.5) A(IOU@0.5)

G-TAD [48] Full – 40.2 46.7

P-GCN [49] Full 63.6 49.1 48.3

Nguyen [36] Weak 46.6 26.8 –

3C-Net [34] Weak 40.9 24.6 35.4

WSGN [31] Weak 42.0 25.1 –

Islam [29] Weak 46.8 29.6 35.2

BaS-Net [35] Weak 44.6 27.0 34.5

DGAM [32] Weak 46.8 28.8 41.0

HAM-Net [39] Weak 50.3 31.0 41.5

Ours Weak 64.4 49.6 52.2
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training dataset contains a series of similar actions, such as in Skiing, Ice-Dancing, 
and Long-Jump. In the action classification experiment, the keyframe of the video 
clips is particularly important for HAM–NET to predict the correct results.

• Our method has a higher level of robustness. The internal tracker loss and neigh-
bor consistency loss are more efficient for weakly supervised learning based on video 
sequences, in which only the action classification temporal labels are needed.

Concerning the experimental results, there are four important points to explain:
First, the classification temporal label is also needed in our method when the object 

location is achieved through weakly supervised learning; this approach is notably differ-
ent from other methods.

Second, the performance outperforms typical methods and some recent fully super-
vised methods because of the spatial-temporal attention mechanism. In other words, the 
attention mechanism also works well when the object location is based on weakly super-
vised learning.

Third, although the classification labels of the source domain may be different from 
that of the target domain, the pretrained model of the source domain can still be trans-
ferred, because they are all human actions with the same attention mechanism.

Finally, our contribution is introducing tracking loss and neighbor-consistency loss for 
action detection tasks. The comparison may not be fair without considering comput-
ing complexity, if the system needs high real-time performance, it can choose simple 
backbones.

However, There is a issue that still requires further study. The tracker needs a few pre-
vious target locations of the frames. This means, if some initial locations are wrongly 

Fig. 5 Activation heat-maps are from the tensors just before the channel fusion network. Jump action 
example shows that HAM–NET’s attention mechanism is more likely be disturbed by sudden or rapid object 
movements such as moving clouds and crowds of people, because it concerns the optical flow of the video 
frames. Walking-With-Dog action example shows that HAM–NET is more likely to ignore important parts of 
an action such as the presence of the dog in cases where the training data set contains a series of similar 
actions such as in Skiing, Ice-Dancing, Long-Jump. Our method has a higher level of robustness
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predicted by the network, it may affect the following loss to some extent during train-
ing. We can skip a few initial frames when training if the length of the video is not very 
short. Nevertheless, the shortage will affect the mAP to some extent for the temporal 
action localization tasks. As shown in Fig. 6, the starting point may be wrongly predicted 
or delayed by several frames. Moreover, if the training data are randomly mixed with 
reverse-time video clips by a ratio of 1:1, the mAP can be further improved by 0.5% on 
the THUMOS14 data set. Although the training process may be affected by the initial 
action frames, the proposed method outperforms the state-of-the-art methods.

In short, the ablation study shows the effectiveness of different parts of the proposed 
method. In classification tasks, the proposed method outperforms the state-of-the-art in 
terms of Frame-mAP, which is improved by 2.7% and 2.1% on data sets UCF101-24 and 
J-HMDB-21, respectively. In action temporal localization tasks, the proposed method 
achieved higher mAP than the current best scores on the data set THUMOS14. More-
over, the proposed method outperforms the weakly supervised TAL models, and even 
shows comparable results with some recent fully supervised TAL methods. Concern-
ing the experimental results, we analyzed the intrinsic reasons of performance improve-
ment, including working the mechanism, attention activation maps and the issues that 
need to be further studied.

5  Conclusions
We introduced a novel location-weakly supervised learning method with a spatial–
temporal attention mechanism for action tube detection. The novelty is remarkable 
compared with previously reported methods. An internal interactive location tracker 
loss and neighbor consistency loss for weakly supervised learning are designed, in 
which only the classification temporal label is needed. This is the first study in location 
weakly supervised situation with a spatial–temporal–attention mechanism for action 
tube detection. Although this is a location-weakly supervised classification-supervised 
method, the mAP performance is better than that of typical weakly supervised methods, 
and even shows comparable results with some recent fully supervised methods.

Abbreviations
TRBL  Tracking-regularization-based loss
NCBL  Neigbor-consistency-based loss
SCEL  Supervised cross-entropy loss

Fig. 6 Temporal action localization experiment on THUMOS14. The horizontal axis denotes time, we 
sequentially plot the ground truth, predicted localization, and prediction score
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