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China important guarantees of improving traffic safety and reducing traffic accidents. Among

many research methods, electrooculogram signal (EOG) has unique advantages. This
paper presents a systematic literature review of these technologies and summarizes

a basic framework of fatigue driving monitoring system based on EOGs. Then we
summarize the advantages and disadvantages of existing technologies. In addition, 80
primary references published during the last decade were identified. The multi-feature
fusion technique based on EOGs performs better than other traditional methods due
to its low cost, low power consumption and low intrusion, while its application is still
limited which needs more efforts to obtain good and generalizable results. And then,
an overview of the literature on technology is given, revealing a premier and unbiased
survey of the existing empirical research of classification techniques that have been
applied to fatigue driving analysis. Finally, this paper adds value to the current literature
by investigating the application of EOG signals in fatigued driving and the design of
related systems, future guidelines have been provided to practitioners and researchers
to grasp the major contributions and challenges in the state-of-the-art research.
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1 Introduction
According to the global status report on road safety conducted by the World Health
Organization (WHO) in 2015, 1.25 million people die from traffic accident every year
worldwide and millions of more people suffer serious injuries in traffic accidents. It is
estimated that the main cause of death of young people is road traffic injures, especially
those who aged 15-29 years [1]. During the driving process, the driver’s mental state
seriously affects the driving behavior, which is a major hidden danger of traffic safety
driving [2]. In Europe, a study of 19 countries showed that 17 percent of drivers felt
drowsy when driving, while 7% of those who fell asleep were involved in an accident [3].
In other kinds of illegal driving situations, such as overloading, speeding, over-
crowding, drunk driving, we can take effective measures to supervise and reduce
the occurrence of accidents. However, there are no quantitative and scientific
measurement standards of fatigue driving. Different from other illegal driving
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behaviors, fatigued driving reflects a complex operation behavior, and it is difficult
to be judged and identified. How to correctly and scientifically define driving fatigue
and implement more accurate monitoring in real time is the main research focus for
researchers.

The European Transport Safety Council (ETSC) defines the fatigue as “concerns the
inability or disinclination to continue an activity, generally because the activity has been
going on for too long” [4]. There are four different kinds of fatigue according to the
ETSC: local physical fatigue, general physical fatigue, central nervous fatigue and mental
fatigue. Sleep in humans is considered as a passive process, whereas sleep actually is an
active process [5]. Sleep in humans is generally divided into two types: rapid eye moment
(REM) sleep and non-rapid eye movement (NREM) sleep [5]. Although researchers have
made significant progress for indicating fatigue status, there are still very few findings
that can be put into practice because of the environmental complexity and under-devel-
oped mechanisms of fatigue in the transport field [6].

Operator fatigue analysis contains diverse research questions. A reliable fatigue detec-
tion device in the future is not only about the development of a fatigue detection algo-
rithm and hardware in mechanical engineering, but also about the understanding of the
underlying mechanism of fatigue in a transport scenario. There are many existing fatigue
monitoring technologies and classification methods, which can be divided into five cate-
gories according to the detection parameters and application technologies: (1) subjective
measures: these methods are applied to measure the fatigue degree of the driver through
drivers’ subjective self-assessment; (2) driver’s biological measures: these methods are
applied to detect fatigue by detecting changes of drivers’ biological signals, including
electrocardiogram (ECQ) [7], electroencephalogram (EEG) [8, 9], EOG [10] and other
fatigue detection methods; (3) driver physical measures: these methods are applied to
detect fatigue degree by human physiological response [11-14]; (4) driving performance
measures: these methods are applied to judge the fatigue degree of drivers by driving
performance [15]; (5) hybrid measures: these methods are often applied to integrate the
two or more detection methods mentioned above to improve the monitoring accuracy
[16-18] to deal with larger data and have better performance.

The existing methods of driving fatigue monitoring have some limitations. Although
the subjective evaluation method is widely used, it has inherent defects which include
the expectation bias and it can interfere with normal work, not suitable for continuous
real-time monitoring of mental fatigue. Moreover, it is unrealistic to always ask driv-
ers to report their state [19]. The vision-based monitoring method is greatly affected by
lighting. In the case of sunlight reflection and glasses reflection, the performance may
decrease by 30% [20]. In the current vision-based monitoring methods, the work for
frontal faces is good, yet extreme head posture will lead to errors in monitoring results
[21]. Monitoring driver behavior based on vehicle operation information requires modi-
fication of vehicle structure, which is unrealistic and unwise in reality [20]. The devel-
opment of vehicle automation also has a certain restrictive effect on the technology of
obtaining fatigue state by vehicle movement [6]. In the monitoring method based on
physiological signals, EOG is a potential fatigue monitoring technology due to its rela-
tively low cost, low power consumption, corresponding speed, and it does not block the
driver’s vision. In addition, EOG also has extensive eye movement tracking capability.
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There is no doubt that the previous reviews on drivers’ fatigue monitoring collectively
covered a wide range of fatigue systems, but those reviews vary in scope [22, 23]. Com-
paratively, the main contributions of this review on this subject is as below:

1. The importance of mental fatigue and fatigue driving is discussed and emphasized.

2. The limitations of fatigue driving monitoring methods in the current transportation
field are discussed and analyzed to simplify the current research on non-invasive
fatigue monitoring.

3. This review adds value to the current literature by studying the application of EOG
signals in fatigued driving and the design of related systems.

In the rest of this review, the research results of the latest fatigue driving monitoring
technology based on EOG are discussed in the second section. Next, the feature extrac-
tion and correlation extraction methods of EOG signals are discussed in the third sec-
tion. And then, the feature classification method and the fatigue driving system based on
EOG are discussed in the fourth section. Finally, several future interests with a discus-
sion regarding the methodology of conducting operator fatigue research are provided.

2 Related work

In the past few years, there have been a number of fatigue driving monitoring techniques
based on a variety of features. In the traditional methods, various signals generated by
the driver are regarded as the effective characteristics of fatigue monitoring. Different
from other bioelectrical signal, as its great potential of practicality and economy, the sys-
tem based on EOGs has been developing rapidly in the field of fatigue driving condition
monitoring in recent years.

A theoretical framework of fatigue driving system based on EOGs using the current
technology and equipment is summarized. The structure of the proposed framework is
illustrated in Fig. 1. The recognition technology based on biological signal belongs to
one of the objective detection methods which is mainly applied to judge whether the
driver is in the state of driving fatigue by analyzing the change rule of biological signal of
the driver’s body. The physiological status can be detected by supervising driver’s related
physiological parameters, such as eyes activity, facial expressions, head nodding, body
sagging posture, physiological electrical signals, etc.

As one of the physiological and electrical signals of the human body, EOG contains
abundant information on features of eyelid movement. Different types of eye movement
features can be extracted from EOGs, including REM [24], slow eye movement (SEM)
[25], and eyelid movement [26], etc. To solve the problem that the electrode placement
of the traditional EOG, Zhang et al. proposed a novel electrode placement on forehead
to extract horizontal electrooculogram (HEO) and vertical electrooculogram (VEO)
from forehead EOG [27]. In addition to being used alone to monitor mental fatigue,
EOGs are often combined with other signals to form new quantitative tools for mental
fatigue [28, 29]. Ahn et al. used multimodal EEG/ECG/EOG and functional near infra-
red spectroscopy (fNIRS) data to explore drivers’ mental fatigue states [30]. Picot et al.
used both brain and visual activity to detect drowsiness which enabled the false alarm
rate to be reduced to 5% [31]. In the field of machine learning, Jiao et al. [32] proposed
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Fig. 1 Structure of the fatigue monitoring framework

a method, some new features were extracted based on wavelet singularity analysis and
statistics to detect SEMs. Classifiers such as SVM, the discriminative graph regularized
Extreme Learning Machine (GELM), and KNN were compared with a 2 s HEO signal
which could finally be recognized as the category of SEMs or non-SEMs. The combina-
tion of the wavelet energy features and the new features based on wavelet singularity
analysis and statistics improved the detection performance. The man—machine response
mode (MRM) based on EOG and other eye movement characteristics can relieve long-
term driving fatigue [2].

With the many studies already done on fatigue driving monitoring based on EOGs
and the importance of these findings and their contribution to traffic safety, these kinds
of work are the most essential to be explored as they laid the foundation for future

technology.

3 Extraction of EOG features

Driving fatigue detection is a nonlinear problem. Physiological signals such as EEG and
EOQG are not fixed, and EOG is considered as a potential and effective method of moni-
toring fatigue status. Different physiological signals have different characteristics, such
as the baseline drift of EOG and the non-repeatability and high signal-to-noise ratio
(SNR) [33], the repeatability and good adaptability to baseline drift of ECG. In recent
years, feature extraction methods for different physiological signals have also made con-

siderable headway.

3.1 Baseline drift of EOG

Implementing an EOG-based interface raises several problems. Baseline drift is a major
concern, since it decreases the tracking accuracy. Although drift changes the baseline
slowly and it can be ignored over short periods, it can’t be ignored over longer periods,
such as fatigue driving monitoring which can give an inaccurate absolute eye angle.
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There are several strategies to overcome the baseline drift. The first strategy tries to
lower the impact of the drift using a wavelet transform [34] and multiple EOGs [35].
This strategy is effective in extending the period of ignoring the drift not for a long
period. Accoupled EOGs are an easy solution to the drift problem which can be used to
estimate the absolute eye angle [36]. However, once an estimation error occurs, the error
will persist all the time. Different from the previous strategy, frequent offset calibration
can offset the drift [37]. However, the current methods require explicit effort which can
interrupt the main function. Finally, tuning the interaction is the other solution. The
drift can be ignored when the interaction is based on the short-time eye movements
instead of absolute eye angle when it needs an additional eye gesture.

As indicated previously, a single solution strategy is often unable to completely solve
the drift problem. Thus, they are often combined in practical systems to deal with the
drift issue. EOGs are useful for estimating eye gaze but it can add artifacts to EEG [38,
39]. Many researchers tried to remove EOG components from other signals [40, 41].
Zahan proposed a method based on the independent component analysis and multi-
variate empirical mode decomposition to remove EOG artifacts from EEGs [42]. Cheng
et al. used a combination of singular spectrum analysis and second-order blind identi-
fication method to remove diverse artifacts [43]. However, EOGs and other bioelectri-
cal signals bidirectionally contaminate each other [44]. Unlike EEG, the nonlinearity of
EOG is small, but the drift problem will eventually reduce the accuracy of the system
when researchers regard it as a linear problem. Manabe et al. proposed a gaze estimation
technique based on the nonlinearity between the EOG and eye angle which provided a
practical solution to the drift problem [45].

3.2 Preprocessing of EOGs based on wavelet transform
Existing techniques for processing signals include Fourier transformation (FFT) [46],
short-time Fourier transformation (STFT) [47], discrete wavelet transformation (WT)
[48], wavelet packet transformation (WPT) [49], and entropy [50]. Wavelet transform is
more suitable than FFT for unstable signal processing, such as EEG and EOG, and Shan-
non entropy is more suitable for compression than classification problems. In fatigue
driving EOG signal processing, there are a lot of researches based on wavelet transform.
Ho et al. used the wavelet methodology for EOG state classification which empha-
sized wavelet pattern recognition methods [51]. The EOGs were processed by WT and
then produced fuzzy signals for a neural network. High precision in time localization in
the high frequency band can be achieved at the expense of reduced frequency resolu-
tion in WT and it can be scaled to match most of the high and low frequency signals.
Therefore, it can achieve the optimal resolution with the least number of base func-
tions. Calculating the percentage of eye closure over time (PERCLOS) is not robust in
practical applications due to the complexity of eye detection methods [26]. WT is sensi-
tive to singularity and can produce a better result than the derivative method. While
highly dynamical alterations are better reflected by EOGs than by integral measures
such as PERCLOS for not containing any assessment of eye and eyelid movements. Few
methods can detect overlong eye lid closures (more than 3 s) [52]. New features were
extracted based on wavelet singularity analysis and statistics to detect SEMs which can
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improve the classification results. For traditional EOGs, WT can be used to obtain many

features which can be classified with higher classification accuracy [53, 54].

3.3 Preprocessing of EOGs based on wavelet packet

Using the WPT can construct features correlate with alertness and drowsiness. Different
from WT, the WPT not only decomposes the approximation coefficients and the detail
coefficients, but also can deal with stationary, nonstationary, or transitory characteristics
of different signals [55].

The WPT was introduced by Coifman et al. [56] by generalizing the link between mul-
tiresolution approximations and wavelets. WPT has more subsequent decomposition
levels than WT. Zhang et al. [57] utilized the relative energies of the WPT subspaces
with Shannon entropy as a measure for feature suitability for detecting drowsiness which
called HWPT. Wang et al. [58] proposed the optimal wavelet-packet feature-extraction
method which called OWP. This method produced a better result. Khushaba et al. pro-
posed a fuzzy mutual-information (MI)-based WPT feature-extraction method for clas-
sifying the driver drowsiness state [59]. This method estimated the required MI using
the fuzzy memberships which achieved a classification accuracy of 95-97% on an aver-
age across all subjects. Vigilance states are intrinsic mental states that involve temporal
evolution rather than a time point [60]. EOGs are easier to implement and ultimately
more feasible than EEG for large-scale implementations for its higher signal-to-noise
ratio. Zheng et al. used WPT to extract features from the forehead EOGs and applied
two temporal dependency models, continuous conditional neural field (CCNF) and
continuous conditional random field (CCRF) [53]. Ding et al. [49] extracted different
features including WPT coefficient and WT coefficient for EOG signals and the experi-
mental results indicated that feature-level fusion (FLF) strategies achieved better clas-

sification accuracies than decision-level fusion (DLF) strategies.

3.4 Other methods of EOGs preprocessing
Different from the approach methods mentioned above, traditional linear spatial filters
include principal component analysis (PCA), independent component analysis (ICA)
[61], common spatial patterns for BCI applications [62] or beamforming methods for
source localization [63]. Chambon et al. used the linear spatial filters to exploit the array
of sensors which increased the SNR [64]. The last layer fed the features to a softmax
classifier. As signal-gathering tools have improved, specialized manufacturers have
produced devices that can quickly extract features. Kim et al. used the teager energy
operator (TEO) by differential operator circuit with high-pass filter and low-pass con-
figurations to extract features from multiple physiological signals [65]. Li et al. used a
wearable eye tracker to acquire a number of eye-movement features without signal pre-
processing process [66]. Advanced driving simulator can easily obtain a large number of
signal features required by fatigue driving monitoring algorithm in laboratory environ-
ment [67].

With the many studies already done on extracting features from EOGs and the impor-
tance of these findings and their contribution to work, great progress has been made
in fatigue driving feature extraction technology based on EOGs. Meanwhile, these
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methods also promote the research and development of fatigue driving system based on
EOG signals.

4 Processing of EOGs and classifier models

Theoretical frameworks are essential contributions in grasping insight about the mech-
anisms influencing fatigue driving monitoring, and in the development of improving
transportation safety [68]. A theoretical framework for fatigue driving detection systems
is summarized to more specifically study the relevant issues in this field. Accordingly,
practitioners will be better directed in the future development of intervention strategies
designed to improve safety outcomes.

The driver, vehicle and environment model (DVE model) are based on the concept of
the “joint” cognitive system, where the dynamic interactions of the DVE model are rep-
resented in a complex way. This model can be seen a as closed loop system whose impact
on the driver is observed in a driving situation.

4.1 Framework design of systems based on EOGs

In the DVE system, there are lots of actions of drivers to control the vehicle based on
current driving environment. Fatigue driving monitoring technology has been greatly
developed in recent years based on various body information of the driver during the
driving process. As a potential approach of bioelectrical signal, EOGs plays an impor-
tant role in fatigue driving condition monitoring system. A certain number of basic com-
ponents affecting variability in driver’s driving monitoring systems based on EOGs are
identified and listed as follows:

Chen et al. [69] improved the traditional feature selection methods of EEG, ECG and
EOG. Gao et al. [70] proposed a method of fatigue detection by eye tracking glasses to
evaluate driving fatigue detection algorithms. This method provides a new option for
wireless and convenient detection of fatigue monitoring. Damousis et al. [71] proposed
a fuzzy expert system for the driving fatigue detection. A system could predict fatigue
accurately with a fuzzy combination of eyelid activity parameters. Barua et al. proposed
a method of considering the effect of individual differences, that accuracy increased 10%
[72].

Considering the various parameters associated with mental fatigue abound, there
are few revealed on how mental fatigue influences drivers’ ability to detect hazardous
situations. Unlike electrophysiological signal monitoring, eye tracking can be unaf-
fected by electromagnetic, temperature and vibration. The accuracy of physiological
signals has attracted the attention of many researchers, but the visual examination of
continuous physiological signals is still a difficult and challenged task even for trained
neuroscientists.

Although all of these research papers provide a significant contribution to furthering
our work of the fatigue monitoring, there is still a lack of broad overviews based on rel-
evant theoretical frameworks [73].

4.2 Signal analysis and modality
Eye movement characteristics, such as saccades, fixations, and blinks detected by EOG
signals, have already been used for fatigue driving monitoring [52]. The work detecting
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the three eye-movement characteristics demonstrates the promise of eye-based activity
recognition (EAR) [33]. There are a large number of parameters obtained by the pre-
processing of EOGs, researchers usually need to select appropriate characteristic param-
eters when using the model to monitor fatigued driving. Table 1 describes some of the
features of eye movements commonly used in fatigue drive monitoring after preprocess-
ing of electrical eye signals. Other eye movement characteristics such as pupil dilation,
microsaccades, vestibulo-ocular reflex, or smooth pursuit movements have few applica-
tions for its hard-to-measure with EOG [33].

This section presents a categorization of EOG modality regarding the various process-
ing models. Table 2 shows the performance and accuracy of the fatigue driving detection
model based on EOG as a comparison method of performance.

4.3 Feature classification

In fact, fatigue driving monitoring technology is the artificial construction of some
algorithms, through the computer ability to automatically process the monitored data,
extraction and classification, and automatic classification. Then the function of high
precision fatigue monitoring can be realized [74—77]. Combining multiple non-invasive
fatigue methods would provide good reliability [78]. Just like the frame design men-
tioned in Fig. 1 the fatigue driving detection system based on EEGs that integrates other
features can realize the modernized and convenient function in the future.

In this literature review, a range of peer-reviewed survey from journals or conferences
is completed. The steps involved in conducting this survey include the identification of
resources and selection of papers, along with data extraction and synthesis. Recogniz-
ing the relevant keywords plays an important role in identifying the proper studies. An
important and impartial survey, by searching for relevant keywords and filtering them,
shows only articles written in English over the past decade. To select relevant studies, we
excluded duplicates and ambiguous research questions, and assessed the accuracy and
specificity of the remaining papers.

From the selected studies, we categorized the classification techniques used for driving
detection relating to the EOGs as follows:

» Artificial neural network (ANN)

+ Support vector machines (SVM)

+ Fuzzy and neuro fuzzy based (NF)
+ Clustering (CL)

« Inductive rule based (IR)

Table 1 Commonly eye movement features from EOGs

Group  Features

Saccade Maximum/minimum/mean of saccade rate /saccade amplitude/maximum/mean of saccade rate vari-
ance/ mean power of saccade amplitude/saccade number

Blink Mean/maximum of blink rate variance/amplitude variance/maximum/minimum/ power/mean power
of blink amplitude/maximum/mean/sum of blink rate/blink number

Fixation ~ Mean/maximum of blink duration variance/ maximum/minimum/mean of blink duration/saccade
duration
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Table 2 Performance and accuracy of the fatigue driving detection model

No. of Model Publication Accuracy
references
5 Finite-state machine (FSM) IET science, measurement and technol-  99%
ogy
10 Support vector machine (SVM) Expert systems with application 86.67%
16 Support vector machine (SVM) Biomedical signal processing and 86+3%
control
19 Support vector machine (SVM) Automation in construction 85.0%
25 Bayes classifier (BL) Medical engineering and physics 83.40%
29 Relevant vector machine (RVM) IEEE access 99.14+1.2%
31 Fuzzy and neuro fuzzy based (NF) IEEE transactions on systems, man, 80.6%
and cybernetics—part a: systems and
humans
32 Discriminative graph regularized 2014 International joint conferenceon  91.8%
extreme learning machine (GELM) neural networks
33 Support vector machine (SVM) IEEE transactions on pattern analysis and  76.1%
machine intelligence
36 Inductive rule based (IR) Biomed. Signal Process. Control 96.7%
38 Support vector machine (SVM) Biomedical signal processing and 79.6%
control
49 Support vector machine (SVM) IEEE access 89.96%
50 Artificial neural network (ANN) IEEE transactions on intelligent transpor-  96.5% ~99.5%
tation systems
53 Discriminative graph regularized 2016 international joint conference on  80.80%
extreme learning machine (GELM) neural networks (IJCNN)
54 Artificial neural network (ANN) 2017 8th International IEEE/EMBS con-  85.0%
ference on neural engineering (NER)
55 Fuzzy and neuro fuzzy based (NF) IEEE transactions on biomedical engi- 91.5%
neering
56 kernel principal component analysis Expert Syst. Appl 90.04%
(KPCA) and support vector machine
(SVM)
58 Artificial neural network (ANN) Medical and biological engineeringand  93.75%
computing
59 Support vector machine (SVM) IEEE transactions on biomedical engi- 95% ~97%
neering
64 Artificial neural network (ANN) IEEE transactions on neural systemsand  85.0%
rehabilitation engineering
65 Inductive rule based (IR) IEEE access 74%
66 Clustering (CL) Automation in construction 93.0%
67 Mixed-effect ordered logit model Analytic methods in accident research ~ 62.84%
69 Adaptation regularization based transfer ~ Expert systems with applications 94.44%
learning (ARTL)
72 Support vector machine (SVM) Expert systems with applications 93.0%
75 Fuzzy support vector machine (FSVM) Artificial intelligence in medicine 90.12~92.20%
76 Artificial neural network (ANN) and Sup-  Expert systems with applications 94.44%
port Vector Machine (SVM)
77 Bayes classifier (BL) Biomedical signal processing and 92.0%
control
80 Extremely learning machine (ELM) Cognitive systems research 95.71%

Spectral bruit analysis (SBA)
Bayesian learners (BL)

Integration and differentiation based (ID)

Extremely learning machine (ELM)

Page 9 of 17
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« Relevant vector machine (RVM)
« Principal component analysis (PCA)
+ Independent component analysis (ICA)

As shown in Fig. 2 presenting the amount of researcher attention that each type
of technique received during the last decade, an apparent publication peak is shown
around the years 2019 and 2020. Overall, SVM, ANN, CL and NF are the four most
frequently used ones; they together were adopted by 62% of the selected studies, as
illustrated in Fig. 3. Figure 2 shows the distribution of research interest in each publi-
cation year. As can be seen, the activity of publications in this field is growing.

Compared to other fatigue driving monitoring techniques based on EOGs, SVM,
ANN, CL and NF seem to have received dominant attention in many years. In addi-
tion to these four classification methods, traditional methods such as ICA, PCA and

IR have also been developed in recent years. In addition, the new methods, such as

Page 10 of 17
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RVM and ELM, are also developing at an accelerated pace in recent years, showing
good classification performance and practicality.
One of the main goals of this review is to pave the way for future researchers and

practitioners by gaining insight into fatigue driving monitoring methods. To validate
the stability of the developed machine learning model and verify its effectiveness, the
researchers used performance measures to describe the reliability required for the
evaluation. In terms of validation methods, cross validation is a common method. For
example, reference 19 used the leave-one subject-out verification method, and the cross-
validation accuracy of reference 10 was 80.74%. In addition to cross-validation, other
performance measures are currently being used by researchers. An overview of the pro-
portion of studies using each performance metric is illustrated in Fig. 4. According to
the figure, it is found that Accuracy and correlation coefficient are popular performance
metrics. 78.13% of the studies used Accuracy as a metric, while 12.5% used correlation

coefficients. The most popular performance metrics was Accuracy, followed by correla-

tion coefficient, root mean square error (RMSE), cross-validation, Recall, specificity, sen-

sitivity, and the area under the receiver operating characteristic (ROC). Figure 5 shows
the performance of the various classification algorithms in terms of Accuracy. According
to the figure, in terms of Accuracy, ANN performed the best, followed by RVM, SVM
and ELM, and NF and BL performed the worst.

The corresponding extraction algorithms and classification methods are different
based on different signal types. In classification algorithms such as SVM, as a non-par-
ametric method, the use of nonlinear discriminant function can overcome the limita-
tion of parameter statistics [79]. SVM has outstanding capabilities of redundant feature
processing, high-dimensional and small sample data processing. The ANN has been
applauded for its excellent anti-noise ability, learning ability and adaptability. Although
the current monitoring accuracy of SVM and ANN is high, the learning speed will
decline when processing a large number of samples. Compared with other classifiers,

ELM can greatly improve the learning speed [80]. ELM is also relatively robust to over
fitting, outliers and noise [73].

Proportion of various performance
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Fig. 5 Accuracy of fatigue driving monitoring algorithm

Although the current research on fatigue driving is beginning to pay off, the per-
formance of these methods is always different for different scenarios and different
database tasks. Subsequent researchers will improve on previous studies to overcome
their inherent shortcomings and form new research techniques for application.

5 Conclusion

Nowadays, with the rapid development of the transportation industry, traffic safety
accidents related to the fatigue driving state occur frequently. In recent years, the
research on relevant methods is also booming. However, different research methods,
directions and algorithms vary in the accuracy of fatigue driving state detection. This
paper summarizes and sorts out the current methods of fatigue driving state analy-
sis and detection based on EOG signals, and also summarizes relevant feature clas-
sification methods. Fair and unbiased comments are given in this paper. In addition,
this review does not include any work in progress, unpublished or non-peer reviewed
publications. Finally, the strengths and weaknesses of fatigue driving detection tech-
niques based on EOGs were extracted directly from the selected studies. This paper
is a systematic literature review, 80 primary studies published during the last decade
were identified. Although we cannot cover all relevant studies in this field, we believe
it will be of some benefit to anyone who is interested in this field of research. The
main findings obtained from the selected primary studies are:

+ The classification techniques used for driving detection relating to the EOGs
included Artificial Neural Network (ANN), Support Vector Machines (SVM),
Fuzzy & Neuro Fuzzy based (NF), Clustering (CL), Inductive Rule Based (IR),
Spectral Bruit Analysis (SBA), Bayesian Learners (BL), Integration and Differen-
tiation based (ID), Extremely Learning Machine (ELM), Relevant Vector Machine
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(RVM), Principal Component Analysis (PCA) and Independent Component Anal-
ysis (ICA). Among them, SVM, ANN, CL and NF are used most frequently.

« Accuracy and correlation coefficient are the most commonly used for performance
measurement in the primary studies. The overall estimation accuracy of most tech-
niques is close to the acceptable level.

+ ANN performed the best, followed by RVM, SVM and ELM, and NF and BL per-
formed the worst in terms of accuracy.

5.1 Future researcher

The general trend is as follows: It is feasible to study driving fatigue by simulating test
with driving simulator. On the basis of single feature monitoring, multi-feature fusion
technology status monitoring will become the mainstream of research. Future technolo-
gies need to be improved from the following aspects:

1. Improve the real-time performance of the monitoring method. Traffic accidents hap-
pen in a very short time, which requires that the detection of driving fatigue can be
rapid, accurate and timely, and can give early warning to drivers. However, the exist-
ing driving fatigue detection methods are poor in real time so far.

2. Eliminate or significantly reduce the intrusion of the detection system. The method
based on EOGs has a high accuracy, because it can monitor the physiological state
from the human body in real time, but it may affect the driver’s operation. Low con-
tact is a major challenge for future hardware facilities.

3. Improve the cost performance of relevant technologies. Even though EOG is cheaper
than other methods, the equipment required by existing conditions is still complex
and expensive, which makes it difficult to popularize. The post-processing data of
multi-feature fusion technology is huge and the algorithm is complex, so simplifying
the algorithm and controlling the cost is a great challenge in the future.

4. Establish a set of accurate and recognized fatigue classification criteria. The cur-
rent fatigue detection technology has no mature reference to accurately classify the
fatigue detection level.

5. The development of relevant technologies should consider different driving environ-
ments and road conditions, and develop relevant fatigue detection technologies suit-
able for different professional drivers.

Ideally, reliable fatigue detection equipment in the future can not only accurately iden-
tify drivers’ fatigue, then warn them, but also notify the third party to intervene when
necessary, which will greatly improve the safety of transportation.
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