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1 Introduction
Timely diagnosis and treatment of lung cancer can reduce mortality rate of patients, and 
early manifestation of lung cancer is mainly pulmonary nodules [1]. Popularity of Com-
puted Tomography (CT) enables radiologists to diagnose pulmonary nodules with more 
convenience. However, it is a time-consuming and labor-intensive task for radiologists to 
make accurate judgements from a number of CT scans. Moreover, the volumes of pulmo-
nary nodules are relatively small, and the shapes are easily confused with surrounding blood 
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ably designed multi-task loss function optimizes performance of segmentation and 
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vessels in most cases. Nowadays, Computer-Aided Diagnosis (CAD) has been widely used 
to assist radiologists for diagnosis, and pulmonary nodule segmentation and classification 
of benign and malignant are crucial steps in CAD systems [2]. The shape, size, growth posi-
tion and other characteristics can be observed from precise segmentation results of various 
types of pulmonary nodules in CT images, which also provide a reference for the classifi-
cation of benign and malignant pulmonary nodules. Therefore, the accurate segmentation 
and classification crucial in early detection of pulmonary nodules have raised great research 
value.

In this paper, we design a network based on adversarial training scheme for pulmo-
nary nodule segmentation and classification at one time. High-Resolution network with 
Multi-scale Progressive Fusion (HR-MPF) is proposed based on High-Resolution Network 
(HRNet) [3]. In comparison with HRNet, HR-MPF is a high-resolution network reduced 
to only three stages with several modifications. In HR-MPF, modified boosted module is 
inserted in the network in multi-scale progressive feature fusion manner to deliver spa-
tial and context information from different resolutions. Specifically, the modified boosted 
module engages residual blocks that can resolve vanishing gradient problem and promote 
effective feature learning. Corresponding to the feature extraction network HR-MPF, a Pro-
gressive Decoding Module (PDM) is proposed to recover the pixel-wise segmentation pre-
diction from the output of HR-MPF. Then, fused feature map is fed to classification module 
to distinguish types of pulmonary nodules. In the adversarial training scheme, a discrimi-
nator is integrated to optimize HR-MPF and PDM, inspired by the generative adversarial 
network. Hence, the optimized segmentation module enhances segmentation and classifi-
cation performance in general. In addition, a simple but practical loss function with bound-
ary consistency constraint is proposed in the segmentation loss. This constraint measures 
the inconsistency between the boundaries of segmentation prediction and ground truth 
such that accuracy of boundary prediction is improved. Experiments on LUNA16 dataset 
show superior results both for segmentation and classification in quantitative evaluation 
and visual perception.

The main contributions of this paper are as follows:

• An HR-MPF enhancing feature communication of all scales is proposed in which the 
boosted module is introduced to HRNet based on multi-scale progressive fusion strat-
egy;

• A PDM is proposed to recover final pixel segmentation prediction in progressive fusion 
manner and refine the output from HR-MPF;

• A discriminator is set to provide additional supervision to the training process of HR-
MPF and PDM;

• A loss function with boundary consistency constraint is proposed that improves the 
accuracy of boundary segmentation. At the same time, a reasonably designed multi-task 
loss function jointly optimizes the whole framework.
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2  Related works
2.1  Pulmonary nodule segmentation

With the rapid development of deep learning in recent years, Convolutional Neural Net-
work (CNN) has been widely applied to the field of medical image processing [4] and 
computer vision [5]. By quick features extraction network trained in supervised manner, 
nodule segmentation and classification are improved by deep learning-based methods. 
Previously, encoder-and-decoder architectures were widely utilized in these seman-
tic segmentation tasks. Chen et  al. [6] established a framework, in which the encoder 
extracted features of nodules, Atrous Spatial Pyramid Pooling (ASPP) captured multi-
scale information through atrous convolution at different atrous rates, and decoder 
recovered spatial resolution. In U-Det [7], Bidirectional Feature Pyramid Network (Bi-
FPN) was added between the encoder and decoder for multi-scale feature fusion. Mish 
activation function and class weight of mask were also used to improve segmentation 
accuracy. Some other works also focus on the context information of pulmonary nodules 
indicated by the relationship between pixels. For instance, CoLe-CNN [8] accessed the 
context information of nodules by generating two masks of all background and second-
ary elements, and introduced an asymmetric loss function that could automatically com-
pensate for errors in annotations of nodules. CDP-ResNet [9] combined the multi-view 
and multi-scale features of nodules and extracted rich local features and context infor-
mation. Yan et al. [10] introduced a Mask R-CNN-based segmentation method to deal 
with class imbalance problem. At present, more and more studies pay attention to 3D 
segmentation of pulmonary nodules due to the significance of spatial structure charac-
teristics for medical diagnosis. Wang et al. [11] adopted a 3D segmentation network for 
pulmonary nodules to obtain the three-dimensional global features of pulmonary nod-
ules. Sun et al. [12] and Dong et al. [13] took the slices of different views in CT scans as 
input to realize multi-view collaborative learning.

2.2  Generative adversarial network‑based medical image segmentation

Since medical images involve privacy of patients and labeling is labor-consuming, 
most of the medical image datasets are limited in quantity and annotation informa-
tion. Among pulmonary nodule datasets, the number of benign nodules also exceeds 
malignant nodules. In order to generate more diverse CT images for training, Genera-
tive Adversarial Network (GAN) [14] is widely used as a data augmentation method. 
For example, Conditional Generative Adversarial Network (CGAN) was adopted by 
Qin et al. [15] to synthesize CT images, and a 3DCNN network with residual units was 
established for pulmonary nodule segmentation, so that the training speed and segmen-
tation accuracy were greatly improved. Onishi et al. [16] synthesized pseudo-pulmonary 
nodules on the basis of the three-dimensional regions of pulmonary nodules extracted 
from CTs. Considering of the diversity of pulmonary nodules, Shi et al. [17] introduced 
a style-based GAN to synthesize the pulmonary nodules with different styles, and the 
experiments proved that using augmented samples can obtain more accurate and robust 
segmentation results.

GAN can not only be used to synthesize images and augment datasets, but also effec-
tively improve the quality of segmentation results. Some researchers [18–20] combine a 
segmentation network, which is regarded as a generator, with a discriminator to process 
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the segmentation task. In the works of Nie et al. [18] and Decourt et al. [19], the gen-
erator outputted segmentation predictions and the discriminator outputted confidence 
maps. The regions with high confidence in the segmentation results were used to further 
guide the training process of segmentation network. The discriminator in Spine-GAN 
[20] outputted 0 or 1 representing whether the input was ground truth or prediction 
result. In some other GAN-based segmentation methods, there is not only a segmenta-
tion network, but also a generator. For instance, in Parasitic GAN [21], the segmentation 
network generated pixel-wise segmentation predictions, the generator synthesized sup-
plementary label maps based on the input random noise, so that the discriminator could 
learn the more accurate boundaries of ground truth.

2.3  Pulmonary nodule classification

Accurate segmentation of pulmonary nodules is of great importance to CAD systems, 
and the classification of benign and malignant nodules is essential to timely treatment 
of lung diseases. In order to cope with the variant characteristics of pulmonary nodules, 
some modifications are made on CNN-based framework and applied to nodules classi-
fication. Wang et al. [22] proposed a CNN based on multi-path and multi-scale network 
robustness of variance in pulmonary nodule volumes and shapes. In STM-Net [2], the 
scale transfer module and multi-feature fusion operation could enlarge small targets and 
adapt to images of different resolutions. Multi-planar analyses of pulmonary nodules, 
that take the features from different places into consideration, are also adopted in some 
classification methods. For example, the methods of pulmonary nodule classification 
proposed by Zhang et al. [23] and Onishi et al. [24] extracted features from CT images in 
three planes (coronal plane, sagittal plane and axial plane). In addition, researchers con-
sider that the malignancy of pulmonary nodules is related to not only its morphologi-
cal characteristics, but also patients’ personal condition. Tong et al. [25] put forward an 
automated pulmonary nodule diagnosis system and multiple kernel learning algorithm, 
combined patients’ age, medical history and other personal information to classification 
based on the shape characteristics of nodules.

3  Methodology
The architecture of the proposed framework is shown in Fig. 1, which is designed for 
pulmonary nodule segmentation and classification all at once. In this paper, the pro-
posed HR-MPF with multi-scale progressive fusion scheme is used for segmentation and 
an adversarial strategy is applied to optimize segmentation module through back prop-
agation. Specifically, the input CT images are preprocessed to assist efficient segmen-
tation of HR-MPF. Meanwhile, through confrontation training between segmentation 
network and discriminator, the segmentation results can gradually approach to ground 
truth. To improve boundary pixel prediction accuracy which is a main challenge of pul-
monary nodule segmentation, a loss function of boundary consistency constraint is pro-
posed. Finally, the feature map from PDM would be delivered to classification module to 
discriminate types of the pulmonary nodule (benign/malignant).
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3.1  Preprocessing

As a preliminary step, all images are re-sampled to make the pixel interval uniform, 
because of the different pixel intervals in different CT scans. The preprocessing pro-
cess includes three steps: (i) CT scan with an effective value of Hounsfield unit between 
[− 1000, + 400] is transformed into the range of 0–255 through linear mapping; (ii) lung 
CT images contain not only lung tissues, but also blood vessels, lung trachea, and other 
external tissues. However, pulmonary nodules are located inside or at the edge of the 
lung in most cases, so it is necessary to remove the tissue other than lung parenchyma to 
reduce interference with pulmonary nodule segmentation. Therefore, we apply a mask to 
the normalized CT scan for obtaining lung parenchyma shown in Fig. 2; (iii) considering 
that pulmonary nodule accounts for a small proportion in a whole CT image, a 64× 64 
region of interest (ROI) in the lung parenchyma is cropped, as the part in the red box in 
Fig. 2, and the cropped images will be input to the proposed feature extraction network.

3.2  Pulmonary nodule segmentation module

Pulmonary nodule segmentation is performed through the proposed HR-MPF and 
PDM. As shown in Fig.  3b, the segmentation module of our method adopts classi-
cal HRNet (HRNetV2) [3] as baseline, and some boosted modules are merged with 

Fig. 1 The architecture of our proposed framework for pulmonary nodule segmentation and classification. 
HR-MPF is a feature extraction network, and PDM generates segmented pulmonary nodules. Classification 
module differentiates benign and malignant pulmonary nodules. The discriminator jointly optimizes 
segmentation and classification of pulmonary nodules in which a loss function with boundary consistency 
constraint is proposed to calculate inconsistency between the boundaries of prediction and ground truth
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multi-scale progressive fusion scheme. By this network architecture, spatial and context 
information of different resolutions could be comprehensively fused.

As shown in Fig. 3a, stage 2, stage 3 and stage 4 of HRNetV2 [3] contain a multi-
resolution group convolution and a multi-resolution convolution. In multi-resolution 

Fig. 2 a Lung CT image; b lung parenchyma image. Lung parenchyma image is extracted from CT image in 
preprocessing

Fig. 3 The architecture of the networks: a the HRNetV2 [3]; b the proposed HR-MPF network consists of three 
stages (blue boxes). This is a multi-scale progressive fusion network with boosted modules incorporated. The 
fusion is implemented from high-to-low or low-to-high resolution so that the spatial and context information 
of features of all resolutions are fully engaged. The size of the feature map in each path is also marked
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convolution, the resolution of each input subset is adjusted by strided convolution 
or bilinear up-sampling, and each output subset fuses the features by adding input 
subsets of same resolution and channels. This feature fusion manner could merge fea-
tures from different input subsets, but this pure summation scheme may cause loss of 
information from different resolutions. Therefore, HR-MPF that incorporates boosted 
module to HRNet in a progressive fusion manner is designed to eliminate loss of dif-
ferent resolution information to the greatest extent. Then, a corresponding PDM is 
also designed to generate the final pixel-wise predictions of the same size of as input 
images recovering from coarse feature maps outputted by HR-MPF.

1) HR-MPF Considering that low-level features with higher resolution contain much 
spatial and detailed information, while the high-level features are rich in semantic infor-
mation. Therefore, this study introduces a modified boosted module to original basic 
units of HRNet and concatenates them through progressive feature fusion manner. In 
this case, features of different scales can well deliver their information to each other.

The proposed HR-MPF extracts features of different resolutions gradually in three 
stages and maintains a high-resolution representation throughout the network. Different 
from HRNetV2 with four stages, the size of the input pulmonary nodule image is 64× 64 
such that three stages are enough for feature extraction. As shown in Fig. 3b, HR-MPF 
starts at a high-resolution stage with only one branch of feature map size 16×16, and a 
branch whose resolution is 1/2 of the lowest resolution in previous stage is added in each 
stage subsequently. By the progressive fusion strategy applied, semantic information 
from low-resolution branches and spatial information from high-resolution branches 
are delivered to each branch with modified boosting method incorporated. Progressive 
feature fusion is implemented from the highest resolution to the lowest resolution or the 
lowest to highest. In stage 3 for example, the strided convolution or up-sampling is used 
for changing the resolution of input to ensure both inputs of the boosted module have 
the same resolution. Fusion is implemented from high-to-low or low-to-high resolutions 
so that the output feature map would maximally preserve structural details and seman-
tic information from all three branches. In low-to-high fusion pathway, the 4 × 4 input 
first undergoes a convolution and up-sampling and is fused with the 8 × 8 input by a 
boosted module. Then, the fusion result undergoes a convolution and up-sampling, and 
is finally fused with the 16× 16 input. Similarly, in the high-to-low fusion pathway, the 
16× 16 input first undergoes a strided convolution for down-sampling so that its resolu-
tion becomes 8 × 8. Then, it is fused with the 8 × 8 input with a boosted module, and the 
output of the boosted module is 8 × 8. The output also undergoes a strided convolution 
for down-sampling and is finally fused with the 4 × 4 input with a boosted module. Ulti-
mately, three feature maps engaged feature information of all scales would be conveyed 
to the proposed PDM for decoding. By this progressive feature fusion strategy, coop-
erative representations can be promoted [26] and the spatial and context information 
between multi-scale features are effectively extracted and integrated.

The boosting method in our progressive fusion network refines results by fusing the 
current and another level of features. Boosted module was initially used in image denois-
ing, but it has also been applied to built a boosted decoder for task such as dehazing [27]. 
The concatenation style of boosted module we use (see Fig. 4) belongs to “U-Net mod-
ule” classified as an alternative of the SOS boosted module used in [27]. Considering 
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the size of the input image, our boosted module is a stack of two residual blocks and the 
computation can be simultaneously compressed. Each residual block consists of two 3 × 3 
convolutional layers, batch normalization and ReLU layers. The connection method of 
residual blocks adopts the method proposed in [28] that the batch normalization and 
ReLU layers are placed before the convolution layers. The residual learning mechanism 
is suggested to well solve problem of gradient vanishing in back propagation when layers 
of the network become deeper.

2) Progressive decoding module As shown in Fig. 5, a new decoder module PDM for 
HR-MPF is designed to progressively recover integrated feature maps to original sizes. 
Different from the representation head in HRNetV1 [29] and HRNetV2 [3] that recover 
final pixel-wise prediction results by direct up-sampling, PDM integrates feature maps 
by feature fusion among all levels progressively. Generated feature maps with resolutions 
of 16×16, 8 × 8 and 4 × 4 are taken as input, of which 8 × 8 and 4 × 4 feature maps go through 

Fig. 4 The architecture of the boosted module. The two inputs of the boosted module are first concatenated 
and passed through two residual blocks. Structure of the residual block is also amplified

Fig. 5 Architecture of the proposed high-resolution progressive decoding module (PDM)
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a deconvolution layer and are concatenated with feature maps of higher resolution 
(16× 16 and 8 ×8), respectively. Next, the two concatenated feature maps are separately 
convolved, and then concatenated together after 8 × 8 feature map undergoes a decon-
volution layer. Finally, a 16× 16 feature map with 64 channels is obtained and would be 
delivered to the classification module to discriminator types of pulmonary nodule. The 
optimized segmentation prediction would be then passed through a DUpsampling for 
binarization and fed into the discriminator.

3) DUpsampling The last layer of the many semantic segmentation networks with 
encoder–decoder architectures [30, 31] typically exploit bilinear up-sampling to recover 
final segmentation prediction. However, this data-independent and over-simple bilinear 
up-sampling may result in sub-optimal results, whose capability in recovering detailed 
edge and texture features is limited. Our segmentation module adopts DUpsampling 
[32], which is a data-dependent up-sampling that considers the correlation among pre-
diction of each pixel. It recovers pixel-wise prediction from final high-resolution repre-
sentation in the PDM. As shown in Fig. 6, DUpsamling takes effect the same as applying 
a 1 × 1 convolutional layer along spatial dimensions, and the convolutional kernels are 
stored in a learnable reconstruction matrix W. DUpsampling makes use of the redun-
dancy in label space of pulmonary nodule segmentation that can be compressed con-
siderably almost with no loss. Although two matrixes computed in pre-training are 
suggested [32], matrix P is used to compress segmentation labels with linear projecting 
and W is the corresponding inverse projection matrix. Considering that two approaches 
could be selected to compute the segmentation loss in our adversarial framework, one is 
calculating loss between coarse outputs of the encoder and compressed labels, the other 
is between the decompressed coarse outputs and segmentation labels. The PDM takes 
the second strategy that matrix W is utilized for recovering the pixel-wise segmentation 
prediction from the final 64×16× 16 feature map.

3.3  Pulmonary nodule classification module

Since pulmonary nodules usually distribute in very small span, accurate segmentation 
is appreciated for classification training. Follow-up classification module would clas-
sify the types of pulmonary nodule based on the largely improved segmentation results 
from previous segmentation module. The input size of classification module is 64×16× 16 
and would be transformed into a 128-dimensional feature vector after a global average 

Fig. 6 Structure of DUpsampling, scale denotes the up-sampling ratio, W is the inverse projection matrix 
and N is the dimension of W 
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pooling layer and a 1 × 1 convolutional layer. Finally, the possibilities of benign and malig-
nant are output through a fully connected layer.

3.4  Discriminator

In current segmentation networks, cross-entropy loss and dice loss are commonly 
used to minimize the differences between prediction result and ground truth. How-
ever, a discriminative network can more efficiently guide the learning of segmenta-
tion towards desirable results by back propagating mismatches between prediction 
result and ground truth [33]. Inspired by GAN, the proposed framework takes the 
segmentation network as generator and adopts a discriminator at the end for adver-
sarial training. In the training process of our discriminator, ground truth or a pre-
diction result of PDM would be input, and the output is a confidence map with the 
same size as input. As a supervisory signal, confidence map indicates the quality of 
the segmentation and helps segmentation module to know the regions it can trust 
during the training [11]. Specifically, the discriminator network is composed of three 
convolutional layers of 64, 128 and 1 channels, respectively, and convolution kernels 
of them are all 4 × 4. The structure of discriminator is shown in Fig. 7. The convolution 
stride of the first two layers is 2, while the stride of the last layer is 1. Batch normali-
zation and ReLU activation function are used after the first two convolutional layers, 
and the output is scaled to the size of the input through bilinear up-sampling. Finally, 
the discriminator outputs a 1 ×64× 64 confidence map, and each pixel represents the 
probability of ground truth or prediction results from segmentation module [20]. This 
process is carried out on a pixel-by-pixel basis, which can improve the accuracy of 
segmentation.

Fig. 7 The structure of discriminator which back propagates the segmentation modules. Discriminator takes 
the segmentation predictions from PDM and the ground truth as input alternately
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3.5  Loss function of networks

In the adversarial training of our method, a segmentation loss with our proposed 
boundary consistency constraint loss is used for segmentation optimization, and a 
cross-entropy loss is applied for classification optimization.

1) Segmentation loss Our segmentation task is to classify all pixels of the input 
images into nodules and background, which is a pixel-level binary classification prob-
lem. The loss function Lseg is used to measure the gap between prediction results and 
ground truth. It adopts cross-entropy loss, which is a practical and effective loss func-
tion and often applied in classification problems. In fact, it is a convex function con-
venient for optimization during training as follows:

where y is ground truth and ŷ is the prediction results of segmentation module. The 
pixel value at coordinate (i, j) in y is expressed as y(i, j). N is the total number of pixels in 
y, and C denotes the number of categories.

The adversarial loss function is used to train the segmentation module and fool the 
discriminator D by maximizing the probability of segmentation prediction, thus the 
segmentation module output can be closer to the ground truth. Our adversarial loss is 
defined as:

where D(ŷ) means the output of the discriminator for input segmentation predic-
tion results. As indicated by [34] that it’s difficult to handle the prediction error at the 
boundaries of segmented objects well and the number of error pixels increases with the 
distance from the boundary getting closer. This means that the prediction of boundary 
pixels is relatively unreliable in overall segmentation. Besides, shapes and sizes of pul-
monary nodules vary and most of them are irregular, which also increase difficulty of 
boundary prediction. As a result, the refinement of boundary prediction affects signifi-
cantly in accurate segmentation results.

Therefore, this paper applies a loss function with boundary consistency constraint 
to calculate the inconsistency between the boundaries of prediction result and ground 
truth to improve boundary pixel segmentation accuracy. Since the segmentation results 
and ground truth of pulmonary nodules are binary images, we only need to make judge-
ment on each pixel. If the current pixel B(i, j) is 1, and one or more of its four adjacent 

(1)Lseg = −
1

N

∑

i,j

∑

c∈C

y(i, j) log
(

ŷ(i, j)
)

,

(2)Ladv = −E[D(ŷ)],

Fig. 8 Schematic diagram of the boundary extraction method. B(i, j) is the current pixel, and B(i, j + 1) , 
B(i, j − 1) , B(i + 1, j) , B(i − 1, j) represent four adjacent pixels
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pixels is 0, the pixel is a boundary pixel. As shown in Fig. 8, the schematic diagram of 
the boundary extraction method, B(i,  j) is the current pixel, and B(i, j + 1) , B(i, j − 1) , 
B(i + 1, j) , B(i − 1, j) are the four adjacent pixels. Figure 9 shows the several boundary 
images obtained by the proposed method.

The boundary of prediction results Bpre and ground truth Bgt are obtained, respec-
tively, the loss function with boundary consistency constraint Lb is calculated by:

In order to improve the performance of pulmonary nodule segmentation, two consist-
ency constraints are introduced in this study. The loss functions Lseg and Lb measure the 
consistency of pixels and boundaries between the prediction results and ground truth, 
respectively. Therefore, the loss function needs to be minimized in the training process 
of the segmentation module, and it is given by:

where Lseg is segmentation loss, Ladv is adversarial loss, and Lb is the loss function of 
boundary consistency constraint. Both �1 and �2 are two weights to balance Ladv and Lb.

2) Classification loss Since the classification task judges the type of nodule as benign or 
malignant, we use cross-entropy usually applied for binary classification of discrete target 

(3)Lb =

∑

i,j

∣

∣Bpre(i, j)− Bgt(i, j)
∣

∣

∑

i,j

Bpre(i, j)+
∑

i,j

Bgt(i, j)
.

(4)LS = Lseg + �1Ladv + �2Lb,

Fig. 9 Pulmonary nodules images, ground truth images and boundary images (top to bottom)
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variables to determine how close the actual output is to the expected. Therefore, the loss of 
classification training could be defined as:

where pk ∈ {0, 1} is ground truth, pk=0 represents that nodule is benign, while pk=1 
represents nodule is malignant. p̂k ∈ [0, 1] is prediction of classification module. n is the 
batch size, and k is the index of samples in a batch.

Since this network architecture achieves segmentation and classification in one model, a 
multi-task loss function is used for joint optimization as follows:

The values of �1 , �2 and �3 will be discussed in Section 4.3. Figure 10 displays the loss 
function mentioned in (6), which indicates the convergence performance of the pro-
posed method.

3) Loss function of discriminator Although the training of GAN is the process of con-
frontation between generator and discriminator, the segmentation module outputting 
segmentation results could be regarded as a generator. The objective of the discrimi-
nator is to accurately determine the source of input and make the output of generator 
approach real data distribution during the confrontation training. Therefore, the design 
of a reasonable loss function of discriminator is also crucial to the training process of 
GAN. WGAN [35] improves the traditional GAN loss function and solves the problem 
of unstable training and collapse mode. In our method, the loss function adopts that in 
WGAN, which is defined as follows:

(5)Lcls = −

n
∑

k=1

pk log p̂k ,

(6)Ltotal = LS + �3Lcls = Lseg + �1Ladv + �2Lb + �3Lcls.

(7)LD = −E[D(y)] + E[D(ŷ)],

0 10 20 30 40 50 60 70 80
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0
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ss
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Fig. 10 Curve for Ltotal of the proposed model as number of epochs increases during training stage
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where D(y) means the output of the discriminator for input ground truth. LD would 
maximize E[D(y)] when the input is ground truth and minimize E[D(ŷ)] when the 
input is segmentation result. The smaller the LD is, the smaller the Wasserstein distance 
between the real distribution and the generated distribution is. After each update of the 
parameters of discriminator, the absolute values of them are truncated to no more than 
a fixed constant c, which is set to 0.01 in our experiments. The segmentation task is to 
classify all the pixels of the input images into nodules and backgrounds, which is a pixel-
level binary classification problem.

4  Results and discussion
4.1  Datasets and evaluation metrics

In this paper, we employ publicly available LUNA161 dataset for evaluating all methods. 
LUNA16 excludes CT images with slice thickness larger than 3mm and pulmonary nod-
ules with diameters less than 3mm from the LIDC-IDRI dataset [36]. LUNA16 contains 
888 CT scans where 1186 pulmonary nodules are annotated by at least three radiolo-
gists. The degree of malignancy of each pulmonary nodule is evaluated with a score of 
1 ∼ 5 , the higher the score, the higher the degree of malignancy. Nodules with a mean of 
1 or 2 are classified as benign, with a mean of 4 or 5 are classified as malignant, and with 
a mean of 3 are ignored [23]. Ultimately, 835 nodules are obtained, including 539 benign 
nodules and 296 malignant nodules. At the same time, the dataset is augmented with the 
operation of flip, rotation and transpose and then enlarged by 6 times. There are a total 
of 5845 nodules, of which 4968 are used for training (3207 benign nodules, 1761 malig-
nant nodules) and 877 are used for testing (566 benign nodules, 311 malignant nodules).

Some standard metrics namely Accuracy (Acc), Dice Similarity Coefficient (DSC), 
Mean Intersection over Union (MIoU), Precision (Prec), Sensitivity (SE) and Specificity 
(SP) are used to validate the performance of our method. The less popular evaluation 
criteria MIoU is defined as:

where TP is the number of true positives, TN is the number of true negatives, FP is the 
number of false positives, and FN is the number of false negatives. For the pulmonary 
nodule segmentation task, the nodular area is positive, the non-nodular area is negative. 
For the pulmonary nodule classification task, we define that benign nodules are negative, 
and malignant nodules are positive.

4.2  Implementation details

The proposed method is trained on the Pytorch platform with Python 3.6. The training 
and validation of overall network are performed on a computer with Intel(R) Core (TM) 
i7-10700 CPU (2.9GHz) with 16G RAM memory, and NVIDIA GeForce GTX 2070 
SUPER with 8G memory.

(8)MIoU =

(

TP

FN+ TP+ FP
+

TN

FP+ TN+ FN

)

/2,

1 https:// luna16. grand- chall enge. org/.

https://luna16.grand-challenge.org/
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During the experiment, the sizes of all input images are 64 × 64 and the num-
ber of epoch and batch size are set to 80 and 16, respectively. AdaBelief (learning 
rate=2.5× 10−4 , eps=10−6 , Betas=(0.5, 0.999)) is used as optimization algorithm of 
segmentation network, which is of fast convergence and high accuracy, and performs 
high stability when training a GAN [37]. In addition, the optimizer of discriminator is 
RMSProp (learning rate=0.002, eps=10−8).

4.3  Parameter setting

As a one-off pulmonary nodule segmentation and classification method, total loss func-
tion Ltotal defined in (6) is balanced by three trade-off parameters. Specifically, �1 , �2 and 
�3 control the weights of adversarial loss Ladv , boundary consistency constraint Lb and 
loss function of classification Lcls, respectively. To evaluate how individual loss contrib-
utes to total loss, we fix any two parameters and measure MIoU, DSC for segmentation 
task and Acc, SE for classification task when varying the third parameter. As shown in 
Fig. 11, weight of adversarial loss is less variable compared to the other two as expected. 
For instance, the value of SE drops from 0.9481 to 0.9365 as �1 varies from 0.2 to 0.3 most 
noticeably. By contrast, larger �3 for Lcls seems to cause a decrease in both segmentation 
and classification performance, although quantitative results fluctuate insignificantly. 
In addition, it could be observed that more boundary loss applied to total adversarial 
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Fig. 11 Influence of the values of parameter on experimental results, a �2 = 1 , �3 = 0.1 ; b �1 = 0.1 , �3 = 0.1 ; 
c �1 = 0.1 , �2 = 1
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training results in a slightly better segmentation results in general. Classification result 
presents a similar trend that Acc and SE peak at 0.9768 and 0.9440 while �2 setting at 
0.6 and 1, respectively. In general, quantitative results fluctuate no more than 0.01 from 
a wide range of selection for each parameter. By evaluating experimental results on both 
segmentation and classification, �1 , �2 and �3 are set to 0.1, 1, and 0.1, respectively.

CT Image

Ground
truth

w/o Lb

w/ Lb

(a) (b) (c) (d) (e)
Fig. 12 Illustration from top to bottom represents original CT images, ground truth, segmentation results 
by the proposed segmentation framework without Lb and with Lb , respectively. Images a–e refer to five 
samples, respectively
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Fig. 13 Comparison of Acc, SE, Prec, MIoU and DSC on segmentation by the proposed framework with (w/) 
and without (w/o) Lb . Graphs a–e correspond to same images illustrated in Fig.12
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4.4  Evaluation on loss function Lb

To verify effectiveness of the proposed boundary loss function Lb , experimental results 
on five instances are conducted whether using Lb or not, as shown in Fig. 12. Noticeably, 
visual results shown in this figure present a much similar outline to ground truth (such 
as w/ Lb for Fig.  12a, c). Qualitative results of segmentation task using Acc, SE, Prec, 
MloU, DSC are reported in Fig. 13, In all cases, boundary loss contributes to an increase 
in quantitative results to some extent. Generally, segmentation seems to be affected 
more significantly since high attention to boundary areas contributes straightforward to 
segmentation accuracy.

4.5  Evaluation on pulmonary nodule segmentation

In order to evaluate the segmentation performance of our proposed network for pulmo-
nary nodules, we compare it with nine different segmentation algorithms based on deep 
neural networks, ENet2 [38], SegNet3 [30], PSPNet4 [39], UNet++5 [40], DeepLabV3+6 
[31], DFANet7 [41], Fast SCNN8 [42], FANet9 [43], SPNet10 [44]. The implementation of 
these algorithms is based on publicly published codes. As shown in Fig. 14, DeepLabV3+ 
and UNet++ achieve relatively better performance among all approaches. The reason 
might be that the atrous convolutions can capture multi-scale information at different 
atrous rates, and the encoder–decoder architecture can extract features and recover spa-
tial resolution better in DeepLabV3+. The encoder and decoder are connected through 
nested and dense skip pathways, which can eliminate semantic gap between feature 
maps as well by UNet++. However, segmentation results of the proposed model are 
more precise than comparative methods because of the progressive fusion strategy and 
loss function with boundary consistency constraint. It could be seen from nodules with 
complex boundaries especially that the proposed network locates the exact region with 
very similar boundaries to ground truth (e.g. the 5th and 8th images of Fig. 14).

All quantitative experiments for segmentation on LUNA16 dataset obtained by the 
proposed HR-MPF and recent deep learning-based models are shown in Table 1. Differ-
ent from Acc and SE in parameter experiment, Acc and SE in Table 1 measure segmenta-
tion results in this comparative experiment. It is obvious that Acc for all methods are of 
minor differences and the values stay at relatively high level. This is mainly because non-
nodular area makes up the majority of CT images in general, which is easily divided into 
non-nodular area. MIoU and DSC both measure region intersection with ground truth, 
and DeeplabV3+, UNet++ and SPNet all show relatively competitive results similar as 
in visual comparison. In detail, DeeplabV3+ achieves 0.9222 and 0.9204, and UNet++ 
achieves even better results at 0.9263 and 0.9227 for MIoU and DSC, respectively. The 

2 https:// github. com/ david tvs/ PyTor ch- ENet.
3 https:// github. com/ Zijun Deng/ pytor ch- seman tic- segme ntati on.
4 https:// github. com/ kazut o1011/ pspnet- pytor ch.
5 https:// github. com/ 4uiiu rz1/ pytor ch- nested- unet.
6 https:// github. com/ huali n95/ Deepl ab- v3plus.
7 https:// github. com/ huaif eng19 93/ DFANet.
8 https:// github. com/ DeepV oltai re/ Fast- SCNN.
9 https:// github. com/ feina nshan/ FANet.
10 https:// github. com/ Andrew- Qibin/ SPNet.

https://github.com/davidtvs/PyTorch-ENet
https://github.com/ZijunDeng/pytorch-semantic-segmentation
https://github.com/kazuto1011/pspnet-pytorch
https://github.com/4uiiurz1/pytorch-nested-unet
https://github.com/hualin95/Deeplab-v3plus
https://github.com/huaifeng1993/DFANet
https://github.com/DeepVoltaire/Fast-SCNN
https://github.com/feinanshan/FANet
https://github.com/Andrew-Qibin/SPNet
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proposed HR-MPF with progressive feature fusion and adversarial training scheme 
achieves slightly better results than comparative methods in all aspects. It could be seen 
that the proposed method could qualitatively locate the area of nodules as MIoU and 
DSC both stay above 0.937. In addition, the proposed method seems to be particularly 
sensitive rather than missing suspicious areas. In general, the proposed architecture is 

Fig. 14 Original images and segmentation results of pulmonary nodules. From top to bottom: original CT 
images, ground truth, SegNet [30], ENet [38], PSPNet [39], DeepLabV3+ [31], UNet++ [40], Fast SCNN [42], 
DFANet [41], FANet [43], SPNet [44], Ours
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Table 1 Quantitative results of pulmonary nodule segmentation in which highlighted values 
represent the best result of each metric

Methods Acc SE Prec MIoU DSC

ENet 0.9895 0.8787 0.9032 0.8960 0.8908

SegNet 0.9873 0.8914 0.8852 0.8906 0.8859

PSPNet 0.9888 0.8742 0.8936 0.8900 0.8838

DeeplabV3+ 0.9923 0.9168 0.9241 0.9222 0.9204

UNet++ 0.9918 0.9150 0.9285 0.9263 0.9227

Fast SCNN 0.9859 0.8130 0.8978 0.8605 0.8477

DFANet 0.9874 0.8208 0.9115 0.8716 0.8612

FANet 0.9901 0.9012 0.9127 0.9049 0.8934

SPNet 0.9931 0.9165 0.9117 0.9106 0.9096

Ours 0.9937 0.9377 0.9427 0.9378 0.9373

Table 2 Comparison of parameters (M), training time (m) and FLOPs (G) between our method and 
other segmentation networks, in which highlighted values represent the best result of each criteria

Methods Parameters (M) Training time (m) FLOPs (G)

ENet 0.36 51 0.04

SegNet 53.54 62 4.5

PSPNet 85.86 80 5.05

DeeplabV3+ 59.33 71 1.38

UNet++ 9.16 42 2.16

Fast SCNN 1.2 38 0.02
DFANet 2.16 69 0.03

FANet 13.65 40 0.09

SPNet 3.8 55 0.17

Ours 3.46 70 0.16
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Fig. 15 Acc curve of classification results by the proposed framework with respect to epochs
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verified effective on improving performance for pulmonary nodule segmentation, while 
DeeplabV3+, UNet++ and SPNet also achieve qualified results.

In this sub-section, computational cost of this method is evaluated in terms of param-
eters, training time and FLOPs [45] as shown in Table 2. Input size for all comparative 
methods is set to the same size ( 64 × 64 ) and all experiments are implemented under the 
same conditions. It could be seen that Fast SCNN uses the least training time (38 min) 
and has the least model complexity as indicated by FLOPs (0.02G). However, ENet has 
the least number of parameters (0.36M) though number of parameters for Fast SCNN 
also stay at a low level (1.2M). Model complexity of the proposed method stays at a mod-
erate level (3.46M parameters, 0.16G FLOPs), but relatively long training time is spent 
due to the adversarial training scheme we introduce for better results.

4.6  Evaluation on pulmonary nodule classification

Figure 15 demonstrates the influence of iteration on classification accuracy. It could 
be observed that the Acc curve raises relatively quickly. In detail, Acc extremely 
approaches 1 as the epoch increases to 30. Therefore, it could be concluded that 
the training of classifier is relatively convergent and stable. Figure  16 illustrates the 
precision–recall curve which indicates the influence of thresholds on classifier 
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Fig. 16 PR curve of pulmonary nodule classification which plots recall against precision

Table 3 Quantitative results of pulmonary nodule classification in which highlighted values 
represent the best result of each metric

Methods Acc SE SP AUC 

Zhang et al. [23] 0.8353 0.8046 0.8599 –

Zheng et al. [47] 0.8867 0.8222 0.9317 –

Tong et al. [25] 0.9129 0.9101 0.9140 –

Zuo et al. [46] 0.9733 0.9726 – 0.9954
Agnes et al. [48] 0.8726 0.8100 0.9190 0.9440

Ours 0.9768 0.9453 0.9789 0.9646
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performance. It could be observed that the precision–recall curve stays close to the 
top-right corner where the area under curve (AUC) arrives at 0.9646.

In order to evaluate the classification performance of proposed method, we com-
pare it with five classification networks in terms of Acc, SE, SP and AUC as listed in 
Table 3. Evaluation results are taken from cited papers and the result for each metric 
differs noticeably. However, it could be seen that the values of SP are greater than 
that of SE. This might be because that most malignant nodules have more prominent 
shape characteristics than benign pulmonary nodules, such as the more irregular 
shape and larger volume as shown in Fig. 17. In general, Zuo et al. [46] achieves sur-
passing results where Acc, SE are both over 0.97. The network established by Zuo 
et  al. only conducts classification and uses a multi-resolution convolutional neural 
network to extract features. In addition, the proposed method also achieves quali-
fied results among comparative methods. Specifically, highest Acc and SP values are 
achieved (0.9768 and 0.9789) because the proposed framework that jointly conducts 
segmentation and classification could well capture malignant nodules if it is in promi-
nent shape characteristics. Overall, the proposed method for segmentation and clas-
sification provides relatively competitive results among methods for classification 
only.

4.7  Ablation study

The proposed HR-MPF is modified based on HRNetV2 [3]. To verify the effective-
ness of several improvement proposed by HR-MPF, comparative experiments with 
HRNetV1 [29] and HRNetV2 [3] are implemented. HRNetV1 and HRNetV2 with 
four stages originally have been reduced to three stages for equivalent comparison 

Fig. 17 Some samples of benign (the first row) and malignant (the second row) pulmonary nodules in 
classification results

Table 4 Comparison of our method with other versions of HRNet, the highlighted values represent 
the best results

Networks Acc SE Prec MIoU DSC

HRNetV1 [29] 0.9914 0.9212 0.9326 0.9208 0.9162

HRNetV2 [3] 0.9921 0.9231 0.9329 0.9216 0.9197

Ours 0.9923 0.9240 0.9347 0.9286 0.9252
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with our network. As shown in Table  4, HRNetV2 achieves slightly higher results 
than HRNetV1 for all metrics. In comparison, the proposed HR-MPF brings an even 
noticeable increase especially on MIoU (0.9286) and DSC (0.9252). This experiment 
generally verifies advantage of the proposed progressive fusion architecture with 
boosted module.

We also make a comparison between different architectures of the proposed HR-MPF 
with multi-scale progressive fusion. Because the progressive fusion basically fuses fea-
ture maps of different resolutions with a boosted module input by same resolution fea-
tures, up-sampling and convolution need to precede the boosted module. As shown in 
Fig. 18, the three available combinations are: (a) an up-sampling, a convolution+Batch 
Normalization, and a boosted module followed by; (b) an up-sampling, a boosted 
module, and a convolution+Batch Normalization; (c) ours, a convolution+Batch 

Table 5 Quantitative results on segmentation and classification by different arrangements of 
feature fusion in HR-MPF

Categories Segmentation Classification Parameters (M)

MIoU DSC Acc SE

Fig. 18a 0.9366 0.9354 0.9759 0.9448 3.46

Fig. 18b 0.9315 0.9309 0.9697 0.9355 3.46

Fig. 18c 0.9378 0.9373 0.9768 0.9453 3.46

Fig. 18 Different arrangements of feature fusion in HR-MPF. a–c provide an example of the 16× 16 feature 
fusion pathway in Stage3 (Fig. 3)

Table 6 Ablation study of each module in the whole framework, the highlighted values represent 
the best results

Networks Segmentation Classification

Acc SE Prec MIoU DSC Acc SE SP

S 0.9923 0.9240 0.9347 0.9286 0.9252 – – –

S + C 0.9925 0.9237 0.9353 0.9283 0.9249 0.9650 0.9323 0.9735

S + C + D 0.9937 0.9377 0.9427 0.9378 0.9373 0.9768 0.9453 0.9789
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Normalization, an up-sampling, and a boosted module followed by. As shown in Table 5, 
change of architecture has mild effect on both segmentation and classification perfor-
mances, while model parameters are the same. Quantitative results of (a) and (c) are 
similar, which indicates that the order of convolution and up-sampling effects the results 
insignificantly. However, the scores of (b) are relatively lower than (a) and (c). In the 
architecture of (b), an individual up-sampling set before the boosted may not guarantee 
an explicit and constrained fusing process of two inputs for boosted modules [27].

To verify the effectiveness of each module in the whole framework, several ablation 
experiments are conducted and the results are recorded in Table 6, where S represents 
only the segmentation network (including HR-MPF and PDM), C denotes the classifica-
tion module and D stands for the discriminator. Ablation model “S+C” represents the 
proposed framework ablating the discriminator and adversarial loss in Eq. (6). Experi-
mental results show that performing segmentation and classification together does not 
affect segmentation results very significantly. However, the discriminator we introduced 
improves both segmentation and classification results significantly. For instance, seg-
mentation Prec rises from 0.9353 to 0.9427 and Acc for classification increases from 
0.9650 to 0.9768. This might be benefited from the adversarial training mechanism that 
guides the training process of HR-MPF and PDM such that segmentation results more 
approaching to ground truths are generated. Hence, the accurate segmentation brings 
an improvement to subsequent classification results as well. Therefore, the architecture 
with two sub-networks and adversarial training strategy is verified effective.

5  Conclusion
In this paper, an effective multi-task framework is designed for pulmonary nodule seg-
mentation and classification, which can contribute to clinical diagnosis of pulmonary 
nodules. Specifically, a widely applicable feature extraction network HR-MPF is pro-
posed. This architecture attributes progressive fusion strategy to HRNet with modified 
boosted modules incorporated. Corresponding PDM decoding predictions from HR-
MPF is also designed which recovers the final pixel-wise segmentation predictions in 
progressive fusion manner. Then, a feature map from PDM is fed into the classification 
module to determine the benign and malignant of pulmonary nodules. Joint training of 
pulmonary nodule segmentation and classification is realized with discriminator estab-
lished and reasonably designed multi-task loss function. Specifically, a boundary consist-
ency constraint is designed in the segmentation loss which further enhances boundary 
segmentation crucial in pulmonary nodule segmentation tasks. In comparison with lat-
est segmentation and classification methods individually, the proposed method shows 
superior results in segmentation and competitive classification behavior in general.
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