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Abstract

Inspired by quaternion algebra and the idea of fractional-order transformation, we
propose a new set of quaternion fractional-order generalized Laguerre orthogonal
moments (QFr-GLMs) based on fractional-order generalized Laguerre polynomials.
Firstly, the proposed QFr-GLMs are directly constructed in Cartesian coordinate
space, avoiding the need for conversion between Cartesian and polar coordinates;
therefore, they are better image descriptors than circularly orthogonal moments
constructed in polar coordinates. Moreover, unlike the latest Zernike moments based

on quaternion and fractional-order transformations, which extract only the global
features from color images, our proposed QFr-GLMs can extract both the global and
local color features. This paper also derives a new set of invariant color-image
descriptors by QFr-GLMs, enabling geometric-invariant pattern recognition in color
images. Finally, the performances of our proposed QFr-GLMs and moment invariants
were evaluated in simulation experiments of correlated color images. Both
theoretical analysis and experimental results demonstrate the value of the proposed
QFr-GLMs and their geometric invariants in the representation and recognition of
color images.

Keywords: Quaternion algebra, Fractional-order moments, Feature extraction, Pattern
recognition, Image reconstruction

1 Introduction

In the last decade, image moments and geometric invariance of moments have
emerged as effective methods of feature extraction from images [1, 2]. Both methods
have made great progress in image-related fields. However, most of the existing algo-
rithms extract the image moments only from grayscale images. Color images contain
abundant multi-color information that is missing in grayscale images. Therefore, in re-
cent years, research efforts have gradually shifted to the construction of color-image
moments [3, 4]. Color-image processing is traditionally performed by one of the three
main methods: (1) select a single channel or component from the color space of a
color image, such a channel from a red—green—blue (RGB) image, as a grayscale image
and calculate its corresponding image moments; (2) directly gray a color image, and
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then calculate its image moments; and (3) calculate the image moments of each mono-
chromatic channel (R, G and B) in a RGB image, and average them to obtain the final
result. Although all the three methods are relatively simple to implement, they discard
some of the useful image information and cannot determine the relationship among
the different color channels of a RGB image. This common defect reduces the accuracy
of color-image representation in image processing or recognition. Owing to loss of cor-
relations among the different color channels and part of the color-image information,
the advantages of color images over grayscale images are not fully exploited in practical
application [5].

Recently, quaternion algebra-based color image representation has provided a new re-
search direction in color model spaces [6, 7] such as RGB, luma—chroma (YUV), and
hue-saturation-lightness (HSV) [8]. Quaternion algebra has made several achieve-
ments in color-image processing [9, 10]. The quaternion method represents an image
as a three-dimensional vector describing the components of the color image, which ef-
fectively uses the color information of different channels of the color image. Elouariachi
et al. [11] derived a new set of quaternion Krawtchouk moments (QKMs) and explicit
quaternion Krawtchouk moment invariants (EQKMIs), which can be applied to finger-
spelling sign language recognition. Wang et al. [12, 13] constructed a class of quater-
nion color orthogonal moments based on quaternion theory. In ref [12], they proposed
quaternion polar harmonic Fourier moments (QPHFMs) in polar coordinate space and
applied them to color-image analysis. They also proposed a zero-watermarking method
based on quaternion exponent Fourier moments (QEFMs) [13], which is applied to
copyright protection of digital images. Xia et al. [14] combined Wang et al.’s method
with chaos theory and proposed an accurate quaternion polar harmonic transform for
a medical image zero-watermarking algorithm. Guo et al. [15] introduced a new set of
quaternion moment descriptors for color image, and they are constructed in the qua-
ternion framework and are an extension of complex moment invariants for grayscale
images. The above results on quaternion color-image moments provide theoretical sup-
port for exploring new-generation color-image moments. However, image-moment
construction based on quaternion theory is complex and increases the time of the
color-image calculation. Moreover, the performance of the existing quaternion image
moments in color-image analysis is not significantly improved from multi-channel
color-image processing [10, 16]. Most importantly, the quaternion color-image mo-
ments constructed by the existing methods are similar to grayscale-image moments
[17] and extract only the global features; therefore, they are powerless for local-image
reconstruction and region-of-interest (ROI) detection. In conclusion, the new gener-
ation of quaternion color-image moment algorithms requires further research. The new
fractional-order orthogonal moments effectively improve the performance of orthog-
onal moments in image analysis and can also improve the quaternion color-image
moments. The basis function of fractional-order orthogonal moments comprises a set
of fractional-order (or real-order) orthogonal polynomials rather than traditional
integer-order polynomials.

Fractional-order image moments have been realized only in the past 3 years, and
their research is incomplete. Accordingly, their applications are limited to image recon-
struction and recognition. In addition, the technique of the existing fractional-order or-
thogonal moments is only an effective supplement and an extension of integer-order
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grayscale image moments. Few academic achievements and investigations of fractional-
order orthogonal moments have been reported in image analysis. Inspired by
fractional-order Fourier transforms, Zhang et al. [18] introduced fractional-order or-
thogonal polynomials in 2016 and constructed fractional-order orthogonal Fourier—
Mellin moments for character recognition in binary images. Xiao et al. [19] constructed
fractional-order orthogonal moments in Cartesian and polar coordinate spaces. They
showed how general fractional-order orthogonal moments can be constructed from
integer-order orthogonal moments in different coordinate systems. Benouini et al. [20]
recently introduced a new set of fractional-order Chebyshev moments and moment in-
variant methods and applied them to image analysis and pattern recognition. Although
the existing fractional-order image moments provide better image descriptions than
traditional integer-order image moments, their application to computer vision and pat-
tern recognition remains in the exploratory stage. An improved fractional-order poly-
nomial that constructs a superior fractional-order image moment is an expected
hotspot of future research. Combining fractional-order image moments with quater-
nion theory, Chen et al. [21] newly developed quaternion fractional-order Zernike mo-
ments (QFr-ZMs), which are mainly used in robust copy—move forgery detection in
color images. Prof. K. M. hosny et al. [22-24] have made outstanding achievements in
the study of fractional-order orthogonal moments in recent years. In refs [22, 23], using
Legendre and shifted Gegenbauer polynomials, respectively, fractional-order Legendre-
Fourier moments and shifted Gegenbauer moments are constructed, which are applied
in the field of image analysis and pattern recognition. Moreover, a novel set of
fractional-order orthogonal polar harmonic transforms for gray-scale and color image
analysis are introduced in ref [24], and their performances are verified by correspond-
ing experiments. The fractional-order generalized Laguerre orthogonal moments and
modified generalized Laguerre orthogonal moments proposed by H. karmouni,
Mohamed sayyouri, and O. El Ogri [25-27] are mainly constructed in Cartesian coord-
inate system, and they completed the fast and accurate calculation algorithm of the re-
lated image moments, and also those moments are applied to the reconstruction or
invariant recognition of 2D and 3D images.

This paper combines the quaternion method with fractional-order Laguerre orthog-
onal moments [28, 29] and hence develops new class of quaternion fractional-order
generalized Laguerre moments (QFr-GLMs) for color-image reconstruction and
geometric-invariant recognition. Compared with circularly orthogonal moments con-
structed in polar coordinates, the proposed QFr-GLMs not only have better image de-
scription performance, but also have global and local description capability. However,
the orthogonal moments in polar coordinates directly have rotation invariance, while
the invariance of image moments in Cartesian coordinates needs secondary construc-
tion. Therefore, trying to study the image moments in polar coordinates is the goal and
task of our next stage. The main contributions of this paper are summarized below.

1. In this paper, a new set of quaternion fractional-order generalized Laguerre mo-
ments is proposed (QFr-GLMs) based on generalized Laguerre polynomials, which
combines quaternion theory with fractional-order transformation. In contrast to
recent work, most of those fractional-order orthogonal moments are devoted to
grayscale images; however, in our article, the grayscale images are extended to



He et al. EURASIP Journal on Image and Video Processing (2021) 2021:17 Page 4 of 35

color images by quaternion algebraic formula. In addition, compared with circu-
larly orthogonal moments constructed in polar coordinates, the proposed QFr-
GLMs not only have better image description performance, but also have global
and local description capability.

2. Since the construction of the proposed QFr-GLMs involves the selection of mul-
tiple parameters, this paper proposes a method for the optimal parameter selection.
In addition, based on the QFr-GLMs, for geometric-invariant pattern recognition
in color images, a new set of invariant color-image descriptors is derived, named
QFr-GLM invariants (QFr-GLMIs).

3. The performances of our proposed QFr-GLMs and QFr-GLMIs were evaluated in
the MATLAB simulation experiments of correlated color images.

1.1 Preliminaries

In this section, we first introduce the basic concepts of quaternion theory and
fractional-order image moments. The quaternion is a generalized form of complex
numbers, a systematic mathematical theory and method proposed by the British math-
ematician Hamilton in 1843 [30], also fractional-order orthogonal moments are defined
in Cartesian and polar coordinate spaces, and we present the transformation relation-
ship between fractional-order orthogonal polynomials in Cartesian coordinate space
and those in polar coordinate space. Then, we introduce the related contents of gener-
alized Laguerre polynomials.

1.2 Representation quaternion algebra and fractional-order image moments

The quaternion is a four-dimensional complex number, also known as a hypercomplex.
It is composed of one real component and three imaginary part components and is for-
mally defined in [5]:

q=a+ bi+ ¢+ dk, (1)

where a, b, ¢ and d are real numbers, and i, j, k are unit imaginary numbers satisfying
the following properties:

==k =-1,jk=-k=iki=-ik=jij=—ji=k. (2)

To obtain the fractional-order image moments (Fr-IMs), we introduce the parameter
and slightly modify the basis of traditional geometric moments [19] as follows:

i = [ [ sy sy, ®

where € R". As evidenced in Eq. (3), the order of the fractional-order geometric
moments is (1 + m); that is, the integer-order is extended to real-order (or
fractional-order).

In Cartesian and polar coordinate spaces, the fractional-order orthogonal moments
are respectively defined as follows:

Frls) — / : / :f(x,wﬁn()tx,x)ﬁm (Ay,y)dxdy, (4)
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FrPY) /+°° +wf (r,0)P,(A,r) exp(~jmO)rdrdo, (5)

where P,(1,x) = VAx4 V2P, (x*) = VA Y ¢, 2+ (A-D/2) are the fractional-order or-

i=0
thogonal polynomials, and P,(1,7) = VArd2/2p, () = VA ¢, #4272 are the
i=0
radial orthogonal polynomials. The traditional integer-order orthogonal polynomials
P, (x) are expressed as P,(x) = Y c, ', where c, ; are the binomial coefficients of the
i=0

orthogonal polynomials [31, 32].

Similarly to traditional integer-order image moments [33-36], a two-dimensional
image flx,y) or f{r,0) can be reconstructed from fractional-order orthogonal moments
of finite order, which can be written as:

Mmax Mmax

Ty =3 BMU™B, (e 0)B(1y), (6)

n=0 m=0

Mmax Mmax

Z ZFrP NP, r) exp(jmb). (7)

n=0 m=0

We now determine the interchangeable relationship between the fractional-order or-
thogonal polynomials in Cartesian coordinate space and those in polar coordinate
space. First, if Q,,(x) is an integer-order orthogonal polynomial in Cartesian coordinates,
the fractional-order orthogonal polynomial is expressed as Q¥ (x) = v/£x7Q,(x*) (The
detailed implementation of the conversion from integer-order to fractional-order is
given in ref [19].), and the corresponding fractional-order radial orthogonal polyno-
mials in polar coordinates is expressed as QS,”(r) = Vir?Q,(r"), te R*. Second, if Q,(r)
is an integer-order orthogonal polynomial in polar coordinate space, the fractional-
order radial orthogonal polynomial is given by QY (r) = v/£r*"1Q,(r*) (The detailed
process is shown in ref [18].). The corresponding fractional-order orthogonal polyno-
mial in Cartesian coordinates is then given by Q%) (x) = /zx2Q, (x"), t€ R*.

The specific conversion process between the fractional-order orthogonal polynomials
in Cartesian coordinate space and those in polar coordinate space is as follows:

(1) Suppose QY (x) = v/£x7TQ, () is a polynomial that is fractional-order orthonor-
mal between the interval [0,1] in Cartesian coordinates, we have:

/1 Qg) (x)QE;) (x)dx = 8, (8)

and carrying out the weighted transformation on Eq. (8), then we have:

[ ewaesma= [ ] T2 Q) =0l ()xde = B, ©)

letting r replace x, and Q\¥)(r) = %Qn (x') = VErTQ,(r'), we obtain:
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1
/ QY (N QY (r)rdr = 8. (10)
0
The Eq. (10) shows that polynomial pr (r) is orthogonal in polar coordinate space.

(2) Suppose QY (r) = v/tr*"1Q,(r*) is a polynomial that is fractional-order orthonor-
mal between the interval [0,1] in polar coordinates, we have:

[ 0w = )
then, the Eq. (11) is transformed, we obtain:

/0 Q) QL () — /0 QORQE ) Vrdr = By (12)
similarly, letting x replace r, and Q¥ (x) = /rQ,(r") = Vix*3Q, (x*), we obtain:

/0 1 QY (x) QY (x)dx = S . (13)

Equation (13) shows that polynomial QEP (%) is orthogonal in Cartesian coordinate

space.

1.3 Generalized Laguerre polynomials
The generalized Laguerre polynomials (GLPs), also known as associated Laguerre poly-
nomials [37], are expressed as ij‘) (x). When a > — 1, GLPs satisfy the following orthog-
onal relationship in the range [0, +0):

I(n+a+1)

S B (14)

4o
/ exp(—x)x“LSl“> (x)LSff) (x)dx =
0

For convenience, we let w(“)(x)zexp(—x)x“ be a weighted function, and W

= y,(f‘) be the weighted normalization coefficient. Here, I'() is the gamma function, and
n, m=0, 1, 2, 3... Equation (14) is then modified as follows:

+oo
/ o (@)L (2L (x)dx = ¥\ 8, (15)
0

where J,,,, is the Kronecker delta function. qu@ (x) is then expressed as:

1
190 =t b (L1, (16)
n 11
where (a)r=ala+1)(a+2)....a+k-1), (a)g=1 is the Pochhammer expression, and
1F1(-n,a + 1;x) is a hypergeometric function given by
a ala+1)

z2 > (a), z
1F1(6l,b,2)—1+zz+m§+—z—— (17)

Using Eq. (17), L' (x) in Eq. (16) is redefined as
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- (n+a)! k

L) = £ (-1 (k) (k + a) k1™

(18)

To facilitate the calculation, we compute Lifo (x) by the following recursive algorithm:
AL (x) = [201-1) + o + 1L () ~(n-1 + )Ly (x), (19)
with L(()“) () =1 and Lg“) (x) = 1 4+ a—x. For details, see [29] and [30].

2 Methods

This section introduces our proposed QFr-GLM scheme, derived from quaternion alge-
bra theory, fractional-order orthogonal moments, and GLPs. After developing the basic
framework of QFr-GLMs, we analyze the relationship between the quaternion-based
method and the single-channel-based approach. As shown in Fig. 1, the components of
an image fgb(x, y) in RGB color space, f(x,¥), fo(x,), and fy(x,y), correspond to the
three imaginary components of a pure quaternion. Therefore, an image /*(x, y) in RGB
color space can be expressed by the following quaternion:

S ,9) = f,(0,9)i + fo(%,9)j + fy(x,9)k. (20)

The remainder of this section is organized as follows. Subsection 3.1 defines and con-
structs our fractional-order GLPs (Fr-GLPs) and normalized Fr-GLPs (NFr-GLPs), and
Subsection 3.2 defines the proposed QFr-GLMs, and relates them to the fractional-
order generalized Laguerre moments (Fr-GLMs) of single channels in a traditional RGB
color image, and the basic framework is shown in Fig. 1. The QFr-GLMs invariants
(QFr-GLMIs) are constructed in subsection 3.3.

- - -\\
- , ~ Gingle chanfiel =
- ~ Input color images  » combine
Z Quaternion based \’ \-epresema“"“ N

Input color images

\  colorimage , ofthe RGB

« representation, ~ color image_ ~
~ P -
;- g

/',

- ——

~
Red component Green component Blue component \

! 1
1 e ) B
1) 1
1 |
| ' |
I ! -
| 1.5 I calculation calculation calculation
I of the Fr- of the Fr- of the Fr-
{ T 7. I GLMs of R GLMsof G|  GLMsof B
\ ' oy "

- e = e e

'FrGuIM,,,,,(f,) FrGLM,,,(f,) 'FrGulwm(f,»

Linear combination

Fractional-order Laguerre image
moments transformation

QFr-GLMs

Fig. 1 Block diagram of QFr-GLM and single-channel Fr-GLM calculations
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2.1 Calculation of Fr-GLPs and NFr-GLPs
Fr-GLPs [37] can be expressed as:

LY (x) = 1P (), (21)

where, 1 >0, x € [0, +eo], similarly to Eq. (15). The Fr-GLPs satisfy the following or-
thogonality relation in the interval [0, +eo]:

~+oo
[ o L e e = 7, >
0

where 0@ (x) = 1x@* D'~ exp(-a? ),)/;a'l) = W The Fr-GLPs can be rewritten

as the following binomial expansion [19, 37]:

n

Ly (@) =Yy, (23)
i=0

where v, = (-1) %, similar to Eq. (19), the Fr-GLPs can be implemented

by the following recursive algorithm:
nL (%) = [2(n-1) + & + 1-# | (0)-(n-1 + )LL) (x), (24)

where L(()M) (%) = 1,L(1a’A)(x) =1+a-xt

In order to enhance the stability of polynomials, normalized polynomials are gener-
ally used instead of conventional polynomials. Therefore, normalized fractional-order
GLPs (NFr-GLPs) are defined as:

()
@) . @ (%)
L) = LD (), [ (25)
Yn
Theorem 1. The NFr-GLPsZEX’A) (x) are orthogonal on the interval [0, +oo]:
T @), \ah)
/ L, (%)L, (x)dx = Sum. (26)
0

Proof of Theorem 1. Given the NFr-GLPsL!®" (x) and substituting fi,“’/l) (x) = L&)

x) “’(a:,,)f)x ) into Eq. (26), one obtains
ys

oo (a,h) (a,))
/ 1o (2, [ 2 B e[S
0 yut yi™
) R4 (27)
=— / o () LN ()LD (x) .
(ad) (a1) Jo
Yn "Ym
Using Eq. (22), we further obtain:
B (“7’1)
| @ was = —Ls,, 9
0 )/Ela‘M}/Es"{)

Page 8 of 35
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(@) - _
when #n = m, % =1, n=m, §,,=0. Thus, [ LSZ’A) (x)LEZ‘)L) (x)dx = &,,,,, which

completes the proof of Theorem 1. To reduce the computational complexity and en-
sure numerical stability, the NFr-GLPs are recursively calculated as follows:

L) = (A0 + ALY (5) + AL (), )

n

F(a)) 0@ (x) F(al) @A) (x n-ta— _
where Zg™ (3) = \/irfh T () = (1 amse)y [y do = 2tk 4y = el

,and Ay = - % The detailed proof of the recursive operation is given in Ap-

pendix A.

Figure 2 shows the distribution curves of the NFr-GLPs under different parameter
settings. Note that the parameter a mainly affects the amplitudes of the NFr-GLPs of
different orders and the distributions of the zero values along the x-axis. Thus, if an
image is sampled with NFr-GLPs, the local-feature regions (ROI) are easily extracted
from the images. In addition, the parameter A can extend the integer-order polynomials
to real-order polynomials (1 >0, A € R"). Therefore, traditional GLPs are a special case
of Fr-GLPs with A =1, that is, Lﬁl""l) (%) = Lﬁl"‘) (x). Note also that changing A changes the
width of the zero-value distributions of the Fr-GLPs along the x-axis (Fig. 2c—e), thus
affecting the image-sampling result.

Amplitude values
Amplitude values

Amplitude values
Amplitude values

Amplitude values
Amplitude values

Amplitude values
Amplitude values

10 20 30 40 50
X

| —*%-n=0 —© n=1 -8 -np=2 ¢ n=3 —+- n=4 n=5

F

g. 2 Distribution curves of the NFr-GLPs under different parameter settings




He et al. EURASIP Journal on Image and Video Processing (2021) 2021:17

2.2 Definition and calculation of QFr-GLMs

Pan et al. [30] proposed the generalized Laguerre moments (GLMs) for grayscale im-
ages in Cartesian coordinates. Recalling the introduction, the corresponding Fr-GLMs
can be defined as:

z,
Z

-1
Frsed = w0 S L L) (3). (30)
J

Il
o
Il
o

i

where (i, j) represents a grayscale digital image. For convenience, we map the ori-
ginal two-dimensionaldigital-image matrix to a square area of [0, L] x [0, L]. Here, L >0,

W= L/N =1y, =%i,j=0,1,2,.,N-1
Using Eq. (30) with the help of Eq. (20), the right-sideQFr-GLMs of an original RGB
color image in Cartesian coordinates are defined as:

QFrs\&) = w L™ () I ) (yq)f " (p. )

where u = (i + j+k)/v/3 is the unit pure imaginary quaternion. The QFr-GLMs
expressed in quaternion and the Fr-GLMs of single channels in traditional RGB color
images are related as follows:

QFrS“Y = A + iB + jC + kD, , 32
nm ]

where A = - J2 [FrSieV (f,) + ErSi (f) + ErSi (f,)),
B = F[ErSi) (f)-FrSis) (f)), € = J5 [ErSi (f,)-FrSis? (f,)),

D= \/_[FrSaA (,fr)_F"”‘S’E'I“V;I/l (.fg)]‘

Accordingly, an original color image /%(p,q) can be reconstructed by finite-
orderQFr-GLMs. The reconstructed image is represented as:

Page 10 of 35
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2.3 Design of QFr-GLMIs

The authors of [38] proposed a geometric invariance analysis method based on
Krawtchouk moments. We considered that the Krawtchouk moments can be calculated
as a linear combination of their corresponding geometric moments. Therefore, the
geometric-invariant transformations (rotation, scaling, and translation) of the Krawtch-
ouk moments can also be expressed as the linear combination of their corresponding
geometric-invariant moments. Inspired by the Krawtchouk moment invariants, this
subsection proposes a new set of QFr-GLMIs. After analyzing the relationship between
the quaternion fractional-order geometric moment invariants (QFr-GMIs) and the pro-
posed QFr-GLMIs, we provide a realization scheme of the QFr-GLMIs; specifically, we
construct the QFr-GLMIs as a linear combination of QFr-GLMs. Finally, we obtain the
invariant transformations (rotation, scaling, and translation) of the proposed QFr-
GLMIs.

2.3.1 Translation invariance of QFr-GMIs

Extending the traditional integer-order geometric moments to real-order (fractional-
order) moments, the quaternion fractional-order geometric moments (QFr-GMs) of an
N x N digital color image can be expressed as follows:

N-1

Z

rgb A1 Az) x Mp Azqfrgb (xi, J’,) ) (34)

Il
o

i=0 j

Similarly to the traditional centralized geometric moments of integer-order, the cen-
tralized moments of QFr-GMs, can be defined as:

N-1

rgb AA2) Z

i=0 j

Z

-1

/h A2
(xi—c) " (-9, qf’gb(xuy,) (35)

Il
o

where the centroid of a digital color image (x,, y.) is defined as:

Page 11 of 35
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x, = (m(ll(”):/h:h) + m%h;/b) + mgl(ﬂ):/h;)tz))/m(()%gb:/h%z)

ridiidy A1ida bidiiAy rgbid1;dy
ye = () 4 mi§D D ) ). (36)

(rgb:diida) (r;dy3h2) (g:h1:)2) (b:A13A2)
Mmoo = My + my, + My

Above, we mentioned that a quaternion color image can be expressed as a linear

combination of the single channels of an original color image. Let A; and A, be 1, and

(ridy A il

let my, ) and ”’1(()1 A2) (orm(lgh'/m)

represent the zeroth-order and first-order mo-

ments of the R component of the original color image, respectively. Similarly, let

m(()%%l"h) and m(()glm‘h) (ormg‘%‘h‘m) represent the zeroth-order and first-order moments

of the G component of the image, respectively, and let m(()%h’m and m(()lfh‘m (or
mi%:AI’AZ)) represent the zeroth-order and first-order moment of the B component of

the image, respectively. In this case, Eq. (35) satisfies the translation invariance of the
original color image. Figure 3 shows an illustration for the processing of translation in-

variance, and here, the red “+” mark represents the centroid of the image in Fig. 3, T1
indicates that the original image is translated 60 pixels down and right, T2 means that

Original image (untranslated image)

[ S U ———

The centralizd images

X

Fig. 3 The processing of translation invariance
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it is translated 60 pixels up and left, and T3 shows that it is translated 60 pixels up and
right, and the final proceed image is the centralized image in Cartesian coordinates.

2.3.2 Rotation, scaling, and translation invariance of QFr-GMls
Referring to Eq. (17) in [38], the rotation, scaling, and translation invariants of QFr-

GMIs can be expressed as follows:

z
Z

-1
rghihiAz) - Mp

=77 [(x;—xc) cos@ + (y,-y,) sind]
=0 j=

X [(yj—yc) cosO—(x;—xc) sin@}hqfrgb(xd’);

(
Vra

Il
o
o

—
w
~

—

(rgbid1 Ag) ) ]
o), and —45°< 0 < 45",
2

0

rgb;A1 A A Aag+2
where 7 = mé(;g - 2), Yy = %; 0= % arCtan(u(rgb:/\l./llzl) B
20 -

The calculation steps of the rotational, scaling, and translation invariants of QFr-
GMIs are detailed in [38].

2.3.3 Rotation, scaling, and translation invariance of the proposed QFr-GLMIs
Substituting Eq. (25) into Eq. (31), we first obtain the following result:

Let 7rgb(i7 j) be the following weighted color-image representation:

7)) = wioleto @)y Jolob) (3,) 5, ju. (39)

Eq. (38) can then be rewritten as follows:

z
4

-1 N-1
Qs = 3,0 3 > LM )L™ ()7 ), (40)

i

Il
o
~.
Il
o

where o, = \/y(i—w and 0, = W Given LY (x) = >y, (see Eq. (23)) and
p m i=0

using Eq. (34), the above formula becomes

QFI‘SE:;‘,IA) = 0uOm Wnpl//mqm(rgb;/h ‘AZ)' (41)
i=0 j=0

Eq. (41) is derived in Appendix B.
The invariant transformations (rotation, scaling, and translation) of the QFr-GLMIs
(rgbid1 Aa)

are obtained by substituting 1,4 in Eq. (41) with V%bzh’/m in Eq. (37):
N-1N-1
QFrS,Y) = 040 YpVmgVps . (42)
=0 j=0
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3 Results and discussion

In this section, the experimental results and analysis are used to validate the theoretical
framework developed in the previous sections. The performances of the proposed QFr-
GLMs and QFr-GLMIs in image processing were evaluated in five sets of typical exper-
iments. In the first group of experiments, the global reconstruction performance of the
color images was evaluated under noise-free, noisy, and smoothing-filter conditions.
The second group of experiments evaluated the proposed QFr-GLMs on local-image
reconstruction, ROI-feature extraction, and the influence of different parameter condi-
tions on image reconstruction. To improve the reconstruction and classification per-
formance of the proposed QFr-GLMs on color images, the parameters were optimized
through image reconstruction in the third group of experiments. The fourth group of
experiments tested the image classification of the proposed QFr-GLMIs under geomet-
ric transformation, noisy, and smoothing-filter conditions. These experiments were
mainly performed on different color-image datasets that are openly accessible on the
Internet. In the last group, the computational time consumption of the proposed QFr-
GLMs was compared with those of the latest QFr-ZMs and other orthogonal moments.
All experimental simulations were completed on a PC terminal with the following
hardware configuration: Intel (R) core (IM) i5, 2.5 GHz CPU, 8 GB memory, Windows
7 operating system. The simulation software was MATLAB 2013a.

3.1 Experiments on global reconstruction of color images

This subsection evaluates the global feature-extraction performance of the proposed
QFr-GLMs on color images. The evaluation was divided into two steps: image-
reconstruction evaluation of the QFr-GLMs and other approaches on original color im-
ages (i.e., noise-free and unfiltered images), and image-reconstruction evaluation of
color images superposed with salt and pepper noise or pre-processed by a conventional
smoothing filter. The QFr-GLMs and other image moments are then applied to image
feature extraction and are finally subjected to color-image reconstruction experiments.
The test image in this experiment was the colored “cat” image selected from the well-
known Columbia Object Image Library (COIL-100). The test image was sized 128 x
128. The color-image reconstruction performance was evaluated by the mean square
error (MSE) and peak signal-to-noise ratio (PSNR), which are respectively calculated as

follows:
1
w1 ) © (®)
MSE'™ = 3 xzyj (MSE + MSE®) + MSE ) : (43)
PSNRU®) = 10 1g(255%/ MSE"™) ). (44)

Here, MSE", MSE®, and MSE® denote the MSE values of the grayscale image corre-
sponding to the independent red, green, and blue components of the color image, re-
spectively, which are defined as

2

MSE &™) — %Z (f(&y)—f(x,y)) : )
x,y

In Eq. (45), fix,y) and f(x,y) represent the original two-dimensionalN x N grayscale
image and its reconstructed image, respectively.
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To assess the global reconstruction performance of the proposed QFr-GLMs, experi-
ments were performed under three parameter settings: (Ia, =a, =1, A,=1,=1.1, (II)
ay=a,=1,1,=1,=12, and (IIl) a, = a, =1, A, =1, = 1.3. The performances of the pro-
posed QFr-GLMs have been compared with those of QFr-ZMs and other state-of-the-
art color image moments. The comparative results are shown in Tables 1 and 2, and
Fig. 4. The reconstruction performance of the low-order QFr-GLMs (1, m < 12) was
poorer under parameter setting (III) than under parameters settings (I) and (II) (Fig. 4).
Under parameter setting (III), the low-order QFr-GLMs were also outperformed by
other color image moments (QGLMs, QFr-ZMs, and QZMs). Note that QGLMs are a
special case of QFr-GLMs with a, = &, =1, A, =1, = 1. However, when the order of each
color-image moment was sufficiently high (n, m > 20), the QFr-GLMs achieved the best
image-reconstruction performance under parameter setting (III). The image recon-
struction results of the QFr-GLMs clearly differed between the low- and high-order
moments. In the low-order moments, the zero-value distributions of the QFr-GLMs
polynomials were concentrated at the image origin under the parameter settings a, =
ay,=1, A,=1,=13, so the sampling neglected the edges and details of the image.

Table 1 Reconstruction performance comparison of different color-image in lower-order moments

Original image

PSNR (db) 16.8188 17.6714 18.1919 18.5531 18.8604 19.3205
MSE 0.0978 0.0802 0.0713 0.0656 0.0612 0.0534
QFr-GLMs >
(@, =a, =1, °
A=A, =133
PSNR (db) 13.5932 18.9993 20.7928 22.5610 23.2533 24.0152
MSE 0.2071 0.0593 0.0392 0.0261 0.0222 0.0119
PSNR (db) 13.3939 14.5321 15.4824 16.1811 15.8261
MSE 0.2162 0.1662 0.1337 0.1138 0.1238
QFr-ZMs [21]
(t=0.8) "'
PSNR (db) 13.3166 14.6537 15.9089 16.2540 16.2072 16.3323
MSE 0.2201 0.1617 0.1211 0.1120 0.1133 0.1102
Order (n,m) 12 16 20 24 28 32
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Table 2 Reconstruction performance comparison of different color-image in higher-order
moments

Original image

QFr-RHFMs [3]
(a=1.9)

PSNR (db) 12.0939

QFr-GLMs
(a,=a, =1,
A, =4,=133)

PSNR (db) 26.0119 28.3334 29.2813 29.2194

QFr-ZMs [21]
(t=0.8)

PSNR (db)
s
QFr-PCTs [24] .
(@=2.1)
PSNR (db) 15.3594 14.8748 14.3323

QFr-PSTs [24]

(@=2.1)
PSNR (db) 16.7603 16.9342 16.9363 16.0101 142378 13.4228
Order (n,m) 30 40 50 80 90 100

Conversely, in the high-order moments, the zero-value distributions of the polynomials
approximated a uniform distribution, so the image reconstruction was optimal. To in-
tuitively show the visual effect of image reconstruction, Tables 1 and 2 presents the
visualization results of the reconstruction experiments with different color-image mo-
ments the lower- and higher-order moments, respectively. It can be seen from Tables 1
and 2 that the proposed image moments in this paper are all optimal in terms of
lower-order moments or higher-order moments, the proposed QFr-GLMs provided a
better visual effect of the image reconstruction than the other color image moments.
Especially in the higher-order, when n, m =50, the image reconstruction of the QFr-
ZMs has failed, while when the order of the moments is equal to 100, the PSNR value
of the proposed QFr-GLMs can still maintain above 29 dB, and the visualization effect
is nice as usual.

To further verify the robustness of the proposed QFr-GLMs in noise resistance and
non-conventional signal processing, the features of color images infected with salt and
pepper noise or subjected to smooth filtering were extracted by the proposed QFr-

GLMs and other color-image moments. New color images were reconstructed using
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Fig. 4 PSNR versus moment-order curves of different color-image moments
J

the extracted features, and the performances of the image reconstructions were evalu-
ated by the PSNR. Figure 5 shows the color images subjected to salt and pepper noise
(noise density = 2%) and smooth filtering (with a 5 x 5 filter window), Fig. 6 and Tables
3 and 4 compare the color images reconstructed from the different image moments.
Regardless of the parameter settings, increasing the order of the image moment (espe-
cially the high-order moments) reduced the sensitivity of the proposed QFr-GLMs to
salt and pepper noise and smoothing. Comparing the PSNR values of the different
image moments, we find that the 28-orderQFr-GLMs outperformed the QFr-ZMs by 8
dB. In addition, as we all know, the image moments are usually more sensitive to noise

Fig. 5 The original and processed color images: a the original color image, b the image infected with 2%
salt and pepper noise, and ¢ the color image after smoothing through a filter with a 5x 5 window
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Table 3 Reconstruction performance comparison of different color-image in higher-order
moments (under salt and pepper noise condition, noisy density = 2%)

Attacked image

QFr-RHFMs [3]
(@=19)

PSNR (db) 17.6261 17.7334 17.6312 13.9890 12.0460 11.8747

QFr-GLMs
(a,=a, =1,
A, =2,=133)

PSNR (db) 24.9832 25.0297 26.0312 25.6736

QFr-ZMs [21]
(t=0.8)

PSNR (db)

QFr-PCTs [24]
(a=2.1)

PSNR (db) 15.2880 14.5064 13.9881
e
QFr-PSTs [24]
(@=2.1)
e
PSNR (db) 16.6475 16.8758 16.8996 15.2801 13.9117 13.1185
Order (n,m) 30 40 50 80 90 100

in higher-order moments. However, compared with other latest image moments, i.e.,
QFr-RHFMs, QFr-PCTs, and QFr-PSTs (for the sake of fair comparison, all the differ-
ent types of image moments are constructed without accurate and fast algorithm), the
proposed image moments can still maintain good image reconstruction visualization ef-
fect when the order of moments is 100, and its PSNR value is more than 25 dB under
the condition of noise density of 2% or smooth filtering (filtering window is 5x5). In
summary, the proposed QFr-GLMs can properly describe color images under noise-
free, noisy, and smoothed conditions and also exhibit high global feature extraction
performance. Consequently, the proposed QFr-GLMs show promising applicability to
color image analysis.

3.2 Experiments on local reconstruction of color images

In recent years, local-feature-extraction or ROI detection have presented new chal-
lenges for the existing orthogonal moments. The existing image moments, especially
most of the orthogonal moments, extract only the global features, and cannot describe
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Table 4 Reconstruction performance comparison of different color-image in higher-order
moments (under smooth filtering condition, filtering window is 5 x 5)

Attacked image

QFr-RHFMs [3]
(@=1.9)
PSNR (db) 17.2437 17.3505 17.3746 14.1369 12.5924 12.0031
QFr-GLMs *
a =a, =1,
(a,=a, P
A =4,=133) -
PSNR (db) 22.8019 23.9500 24.6031 25.5007 25.6317 25.6294

QFr-ZMs [21]
(t=0.8)

PSNR (db) 7.7072

QFr-PCTs [24]
(a=2.1)

9 3

PSNR (db) 13.2343 13.1473 13.9450 15.3107 14.8726 14.3181

QFr-PSTs [24]
(a=2.1)

PSNR (db) 16.4066 16.4661 16.4290 15.9437 14.2722 13.3582

Order (n,m) 30 40 50 80 90 100

the local features. The detection of arbitrary ROIs in images is especially challenging.
Among the existing orthogonal moments, only a few discrete orthogonal moments
based on Cartesian coordinate space, such as the Krawtchouk [39] and Hahn [40] mo-
ments, can perceive the local features in an image. Thus far, the application of such
discrete orthogonal moments has been limited to local-feature detection in binary im-
ages. Xiao et al. [19] proposed fractional-order shifting Legendre orthogonal moments,
which extract the local features of a grayscale image by changing the parameter values
of the fractional order. However, the local image is not well reconstructed (see Fig. 5 in
[19]); especially, the details of the ROI are insufficiently protected in the local-image re-
construction. In addition, local-feature-extraction from color images has been little re-
ported in the literature on image moments. In this subsection, we meet the challenge
of applying the proposed QFr-GLMs to local-feature extraction from color images. The
test images were three typical “block” color images selected from the COIL-100 data-
base. The local features in the color images at different positions of the three “block”
color images were reconstructed using the features extracted by the QFr-GLMs with
different parameters. The experimental results are summarized in Table 5. This table
shows that under different parameter settings, the proposed QFr-GLMs provided good
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Table 5 Local-image reconstruction performances of the QFr-GLMs on “block” color images

o =
.

a,=20,a,=1, a, =85a, =1, a,=1,a,=100,
Parameter values 4,=140,4, =150 4, =140,4, =150 A,=128,4, =138
L=30,n=m=18 L=30,n=m=18 L=30,n=m=18

The selected
ROI images from
original images
-

The ROI

reconstructed images

The selected

ROI images from

original images

The ROI

reconstructed images

a,=20,a,=1, a, =la, =80, a, =25a,=1,
4, =170,4, =1.60 4,=120,4, =130 4,=17,4,=08
L=30,n=m=18 L=30,n=m=18 L=30,n=m=18

Parameter values
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ROI images from \

original images

2

The ROI

reconstructed images

]
|
o0
=]
]
[
)
=]

ax:15,ay:1, ax:30,a},=86, =0V, a, =120,
A=12,4,=16  A,=1864=122 1 =1261 =139
L=30,n=m=18 L=30,n=m=18 L=30,n=m=18

Parameter values
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image reconstructions in different regions of the original color image (the target areas
of ROI extraction from the original color images are enclosed in the red-edged boxes).
Under the parameter setting a, =20, a, =1, A, =14, A, = 1.5, the QFr-GLMs extracted
the upper part of the original color image. Meanwhile, the QFr-GLMs with a, =1, a, =
100, A, =128, 1,=1.38 extracted the bottom part of the original color image, those
with a, =25, a,=1, A,=1.7, A, = 0.8 obtained the left part of the original color image,
and those with a,=85, a,=1, 1,=14, 1,=15 extracted the right-upper part of the
original color image. We conclude that the translation parameters of the proposed
QFr-GLMs determine the position information of the local features in the original
color images, whereas the fractional-order parameters mainly affect the quality of the
local-image feature extraction and the details of the reconstructed color image. Specif-
ically, the proposed QFr-GLMs with smaller and larger values of the translation param-
eter & along the x- and y-axes, respectively, mainly extracted the bottom part of the
color image; conversely, the proposed QFr-GLMs with smaller and larger a values
along the x- and y-axes, respectively, extracted the upper part of the color image. If the
parameter values of different fractional orders along the x- and y-axes are combined,
the QFr-GLMs obtain the local information at different positions in the original color
image. As shown in the local-image-reconstruction results (Table 5), the proposed
QFr-GLMs well described the local features at different positions of the block color im-
ages, implying their effectiveness as a local-feature-extraction descriptor.

To further verify their local-feature extraction capability, the proposed QFr-GLMs were
tested on a medical image (a computed tomography (CT) image of the human ankle, CT
image seems to be a grayscale image; however, it is composed of R, G, and B three compo-
nents—thus, in this experiment, it is regarded as a color image). In this experiment, the
QFr-GLMs were required to detect the ROI (the lesion area) in the human-ankle CT image.
As shown in Fig. 7, the proposed QFr-GLMs properly detected the lesion in the CT image.

3.3 Optimal parameter selection

As presented in Subsection 4.2, the proposed QFr-GLMs with determined translation
parameters arequire the proper selection of the fractional-order parameter A, because
this parameter mainly affects the quality of the local-image feature extraction and the
detailed descriptions of the reconstructed image. Therefore, optimizing the parameter A

(®) ©

Fig. 7 CT image of the ankle: a original image, b lesion area (enclosed in the red-edged rectangle), and ¢
local extraction image
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is the key requirement of image reconstruction and classification by the proposed QFr-
GLMs. The optimal A will guarantee the quality of the image reconstruction and the ac-
curacy of image classification.

To study the influence of the parameters A, and A, on the performance of the proposed

piggybank,
from the COIL-100 database. Referring to the different image reconstructions, an approach

” o« ” o«

QFr-GLMs, we selected 30 color images (e.g., “cat, tomato,” and “block,”)
for selecting the parameter optimization method is proposed in this subsection. To eluci-
date how image size affects the parameters A, and A,, each of the selected images was scaled
to different sizes: 256 x 256, 128 x 128, 64 x 64, and 32 x 32. The results are shown in Fig. 8.

To determine the optimal parameters A, and A, in combination, this subsection com-
putes the performance of the proposed QFr-GLMs by the average statistical normalized
image reconstruction error (ASNIRE), which is defined as follows:

ASNRIE (Ay, Ay) = % i: SNIRE(f ., f.)- (46)
k=1

Fig. 8 Some classic color sample images selected from the COIL-100 database and scaled to different sizes
(left to right: 256 x 256, 128 X 128, 64 x 64, and 32 X 32)
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Here, the number of testing images L was 30, f, is an original color image, and f, is
the reconstruction of that color image. The SNIRE is the statistical normalized image
reconstruction error function proposed in [19], defined as

N

N
Yo fexy)felxy) |

x=1 y=1

S fixy)

x=1 y=1

SNRIE(f .. f..) = (47)

In this experiment, the orders of the QFr-GLMs were set to 10 < n, m < 20. Because
Aw Ay 20, we limited their values to the interval (0, 2] and calculated the combined re-
sults of their optimal values. Figure 8 shows the reference selection range of the opti-
mal parameter values 1, and A, obtained by this method. The ASNIRE values of the
four color images were minimized around A,, A, =1 (the blue regions in Fig. 9). There-
fore, when selecting the optimal parameter combination for the proposed QFr-GLMs,
we suggest seeking within the range [1.0, 1.5], and it is suggested that the optimal

Fig. 9 Search values of different parameter combinations of A, and A, within a limited region: a256 X 256, b
128 %128, € 64 x 64, and d 32 x 32
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parameters should be selected between 1 and 1.5, which can also be obtained from the
distribution curves of the NFr-GLPs under different parameter settings. It can be seen
from the subgraphs f, g, and h of Fig. 2 that when the A is 1.2 or 1.3, respectively, the
distribution of the polynomials is close to uniform distribution. According to the zero-
point theory, the closer the polynomial distribution is to the uniform distribution, the
better the effect of using the polynomial to sample the image; at this time, the image
moments constructed by the polynomials have the best overall description capability
for an image.

3.4 Geometric-invariant recognition in color images

This subsection tests and analyzes the recognition of geometric-invariant transforma-
tions (rotation, scaling, and translation) by the proposed QFr-GLMs, and their robust-
ness to noise and smoothing filter operations. This experiment was performed on two
sets of public color-image databases: (128 x 128)-sized color images selected from
COIL-100 (Fig. 10) and (128 x 128)-sized butterfly color images selected from [5] (Fig.
11). To verify that the proposed QFr-GLMs recognize geometric invariants, the QFr-
GLMs were employed with three parameter settings: ()A,=1,=11, (I)1,=1,=12,
and (IIMA, =1, =1.3. In all three cases, @, = a, = 1. The images sets were categorized by

Fig. 10 Some typical color images in the Coil-100 dataset of Columbia University
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Fig. 11 Some sample images in the Butterfly color image database

a KNN classifier. The amplitudes of the color-image moments were arranged into a fea-
ture vector for classification as follows:

Vnm = {VOO; V01, Voz...},l’l + l’l’lSI(,I(EZJr. (48)

The classification effects of the different image moments were determined by a meas-

ure called the correct classification percent (CCPs), expressed as

N
CCPs = — x 100 49
s = e X 100, (49)

where N, and N, represent the number of correctly classified objects and the total
number of all testing objects, respectively.

3.4.1 Experiment 1

The color image dataset for this experiment was extracted from COIL-100. First,
100 color images from the COIL-100 dataset were rotated by 0° and 180°, obtain-
ing 200 images (100 x 2) as the training set. Each image in the training set was
then translated by (Ax, Ay) € [-45,45]. The set of rotation vectors was defined as
¢; =5+1i, where i€[0,35] is an integer, and a scale factor a was defined for the
scaling operation. Rotating 200 images by¢; and scaling by a=0.5+(2.5=¢;)/
360 € [0.5, 3], we obtained 7200 (36 x 200) color images for testing. Finally, salt
and pepper noise (with noise density ranging from 0 to 25% in 5% increments)
was added to each image in the existing test set, forming a new noisy test set. In
this experiment, the vectors V,,, of the different image moments were obtained
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Fig. 12 Classification results of the COIL-100 color image dataset: a low-order moment (k = 12) and b high-
order moment (k = 28)
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at k=12 (low-order moment) and k=28 (high-order moment). Figure 12 com-
pares the correct classification rates (CCPs) of the proposed QFr-GLMs and other
orthogonal moments (QZMs, QFr-ZMs, and QGLMs). As seen in the figure, the
proposed QFr-GLMs outperformed the other moments in both cases (k=12 and
k=28).

3.4.2 Experiment 2

The dataset for this experiment was extracted from the Butterfly color image database.
As described in Experiment 1, the 20 color images in the extracted dataset were rotated
by 0°, 90°, and 270°, obtaining 200 images (20 x 3) as the training set. Next, following
the steps described in Experiment 1, we obtained 2160 (36 x 60) color images as the
test set. Finally, each image in the test set was passed through a smoothing filter with
different window sizes (3, 5, 7, and 9), obtaining 2160 new color images as the filtered
test set. Again, the vectors V,,, of different image moments were obtained at k=12
(low-order moment) and k=28 (high-order moment). Figure 13 shows the classifica-
tion experiment results after smoothing. The proposed QFr-GLMs were strongly robust
to rotation, scaling, and translation transformations and achieved higher classification
accuracy than the QZMs, QFr-ZMs, and QGLMs.

3.4.3 Experiment 3

In order to further prove the performance of the proposed image moments in geomet-
ric invariant recognition and classification, we compare the proposed geometric mo-
ment invariants (QFr-GLMs, a, =a,=1, A, =1, =1.3) with the latest image moments
(i.e, QFr-RHFMs, QFr-PCTs, and QFr-PSTs). The experimental study on the geomet-
ric invariant image recognition accuracy of the proposed QFr-GLMs under both noisy
and smoothing filter conditions is presented in this subsection. Based on the training
set and test set generated in Experiment 1, salt and pepper noise and smoothing filter
destroys each image of the test set, and SNR varies from 25 dB to 0 dB with the reduc-
tion 5dB. At each SNR value, we obtain a new processed test set, and k-nearest neigh-
bor (KNN) classifier is adopted to implement classification. As in every testing set, the
correct classification percentages (CCPs) are gained from the proposed QFr-GLMs,
QFr-RHFMs, QFr-PCTs, and QFr-PSTs, and the experimental results are shown in
Table 6. From the classification results in Table 6, it can be seen that the CCPs of the
proposed QFr-GLMs is the highest in both lower- and higher-order moments com-
pared with other latest image moments.

3.5 Computational times

This experiment determined the computational times of the proposed QFr-GLMs (for
notational simplicity, we express the QFr-GLMs with the three groups of parameter
settings as QFr-GLMs (I), QFr-GLMs (II), and QFr-GLMs (III)). The results are com-
pared with those of the latest QFr-ZMs and other quaternion orthogonal moments
(such as QZMs, QFr-RHFMs, QFr-PCTs, and QFr-PSTs). The simulations were con-
ducted on a Microsoft Window 7 operating system with a 2.5-GHz Intel Core and 8
GB memory, and the program was encoded in Matlab2013a. The images were 25 color
images of size 128 x 128 pixels, extracted from the Columbia University Image Library.



He et al. EURASIP Journal on Image and Video Processing (2021) 2021:17

1007
951+ b
90 b
__ 85
g
[}
o
8
80F | —e= QZMs[9]
—o— QFr-ZMs[21]
= 8 =-QGLMs
"9 QFr-GLMs(l)
78| == QFr-GLMs(ll)
QFr-GLMs(lll),
70f N
65 | 1 1 1 1
1 2 3 4 5 6 9
Smoothing Windows
(a)
100 -
951+ b
90 b
S
g 85t
O
(s}
‘=e=- QZMs[9]
—o— QFr-ZMs[21] .
80t = 8 =-QGLMs €
0 QFr-GLMs(l)
=+=' QFr-GLMs(ll)
QFr-GLMs(lll),
75 N
70 | 1 Il 1 1
1 2 3 4 5 6
Smoothing Windows
(b)
Fig. 13 Classification results of the Buttery color image dataset: a low-order moment (k = 12) and b high-
order moment (k = 28)

Page 29 of 35



He et al. EURASIP Journal on Image and Video Processing (2021) 2021:17 Page 30 of 35

Table 6 Geometric invariant classification comparative study of the QFr-RHFMs, QFr-GLMs, QFr-
PSTs, and QFr-PCTs

CCPs (%) KNN

k=12 k=28

SNR  QF-RHFM QFr-  QFr-PST  QF-PCT  QF-RHFM QFr-  QFr-PST  QFr-PCT
(dB)  s[3] GLMs  s[24] s[24] s3] GLMs  s[24] s[24]

o 97.8 100 9.3 97.2 100 100 100 100

25 94.2 100 922 936 963 100 987 97.1

20 898 %4 824 839 903 96 923 918

15 854 898 803 81.1 895 %3 903 888

10 689 792 602 643 776 859 841 82.7

5 50.2 677 511 558 598 693 624 619

0 256 312 236 241 358 409 303 298

Figure 14 summarizes the average elapsed CPU times of the 25 color images as the
(n + m)th order of each image moment increased from 5 to 25 in 5-unit increments.
The computational time of all orthogonal moments increased with order. However,
as the polynomial of the moment in our approach is calculated by a recursive algo-
rithm, the proposed QFr-GLM color image moments in all parameter settings were
computed faster than the QZMs and QFr-ZMs, and the computational time
approached that of QGLM, QFr-RHFMs, and QFr-PSTs. By the way, the basis func-
tions of QFr-RHFMs, QFr-PCTs, and QFr-PSTs are based on trigonometric functions;
therefore, compared with generalized Laguerre polynomials and Zernike polynomials,
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Fig. 14 Average elapsed CPU times of six kinds of orthogonal image moments
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they do not involve accumulative summation and factorial operations, so the polyno-
mial calculation process is relatively fast. However, because the QZMs, QFr-ZMs, QFr-
RHFMs, and QFr-PSTs are computed in polar coordinates, the color images must be
converted from Cartesian coordinates to polar coordinates, whereas the proposed
image moments are directly constructed in the Cartesian coordinate system, which fur-
ther reduces the computational time.

4 Conclusions

This paper proposed a new set of quaternion fractional-order generalized Laguerre mo-
ments (QFr-GLMs) based on GLPs and quaternion algebra. As color-image feature de-
scriptors, the proposed QFr-GLMs can be used for color-image reconstruction and
feature extraction, and the image moments are available for global and local color
image representations in the field of image analysis. More importantly, based on the
local image representation characteristics of the proposed QFr-GLMs, the application
of the proposed moments in the field of digital watermarking [41-43] can effectively
solve the problem of resisting large-scale cropping and smearing attacks, which is also
one of our future work directions. After establishing the relationship between QFr-
GLMs and Fr-GLMs, it was found that QFr-GLMs can be represented as linear combi-
nations of Fr-GLMs. We also presented a new set of rotation, scaling, and translation
invariants for object recognition applications. In comparison experiments with other
state-of-the-art moments, i.e., the performance tests included global and local-feature
extraction from color images, and geometric-invariant classification of color images.
The proposed QFr-GLMs demonstrated higher color-image reconstruction capability
and invariant recognition accuracy under noise-free, noisy, and smooth filtering condi-
tions. Thus, the proposed QFr-GLMs are potentially useful for color-image description
and digital watermarking [44—47]. However, the only deficiency is that the perfect geo-
metric invariance [48, 49] cannot be achieved directly for invariant image recognition
since the derivation of these QFr-GLMs invariants are not based on generalized
Laguerre polynomials themselves. In the future, the focus of our work is to construct a
new set of generalized Laguerre moment invariants, namely, deriving an explicit gener-
alized Laguerre moment invariants approach, which can be directly applied to the field
of image recognition. In addition, combining with the existing color image representa-
tion methods based on quaternion algebra [50, 51] and finding a better performance
fractional-order radial orthogonal polynomials to construct quaternion fractional-order
image moments are our other goals.

5 Appendix A
5.1 Proof of the recursive operation Eq. (29):
From Eq. (24), when n > 2, we have:

_ 2n-1+a-x') _ -1 _
70 (g = P14 ) pan ) (214 0) g

n n

Substituting Eq. (28) in Eq. (27), we obtain:
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_ (2n-1+4a-o")
- n

(@) _ L(rtatl) (n+a)I (n+a) (n+a) (@A)

Substituting y;, iy Y., into the above formula, we
have
Sy, _ (21-1+a-at) _(n-1+a) oM (x) Py
Ln (x) = P 7 (n+a) (n+a_1) (@) -2 (x)
n n-1 Yn 1
(2n l-i-cr—x’1 1 @) (n-1+a) n(n-1) ad) (x ) (@)
n+a w1 (®)- n (n+a)(n+a-1) )/( i‘) L ()
(2n-1 - Dt
L”)LH (x)- w&%)
n(n+ a) (n+a)n
2n-1+a — x —(a,
= ———L @)+ @)+ L% ()
n(n+ a) n(n+ a)
Letting Ag = 2214 A) = —=L__ Ay = - (ta-1)(n-1) (e complete the proof.
\/n(n+oz)’ \/n(nJra)’ n(nta) 7 ’

6 Appendix B
6.1 Derivation of Eq. (41)
Substituting Egs. (23) and (34) into Eq. (40), we have:

N-1N-1 n

QFVSSI?;,IA) = 0,0m / Z Z (//npxl Z l//mqy] b ) £ (l7 ])

i=0 j=0 \p=

m
—rgb ., .
=040 Z l//np l//qui/lxpy j/lyqf (