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Abstract

Depth is essential information for autonomous robotics applications that need
environmental depth values. The depth could be acquired by finding the matching
pixels between stereo image pairs. Depth information is an inference from a matching
cost volume that is composed of the distances between the possible pixel points on
the pre-aligned horizontal axis of stereo images. Most approaches use matching costs
to identify matches between stereo images and obtain depth information. Recently,
researchers have been using convolutional neural network-based solutions to handle
this matching problem. In this paper, a novel method has been proposed for the
refinement of matching costs by using recurrent neural networks. Our motivation is to
enhance the depth values obtained from matching costs. For this purpose, to attain an
enhanced disparity map by utilizing the sequential information of matching costs in
the horizontal space, recurrent neural networks are used. Exploiting this sequential
information, we aimed to determine the position of the correct matching point by
using recurrent neural networks, as in the case of speech processing problems. We
used existing stereo algorithms to obtain the initial matching costs and then improved
the results by utilizing recurrent neural networks. The results are evaluated on the KITTI
2012 and KITTI 2015 datasets. The results show that the matching cost three-pixel error
is decreased by an average of 14.5% in both datasets.

Keywords: Computer vision, Multi-layer neural networks, Recurrent neural networks,
Stereo image processing

1 Introduction
In recent years, studies in the field of stereo image matching have been one of the major
focuses of attention in the field of computer vision. It is widely applied in medical image
processing, robotics, three-dimensional (3D) reconstruction, object recognition, object
detection, and especially autonomous vehicles. Stereo matching algorithms intent to find
the corresponding pixels between rectified image pairs which are taken from different
viewpoints of the same scene. The difference between these corresponding pixel locations
in the horizontal axis is named as disparity.
Generally, conventional stereomatchingmethods use the four-step taxonomy proposed

by Scharstein and Szeliski [1]. These steps are the computation of matching costs, aggre-
gation of these costs, disparity optimization, and post-processing of the disparities. The
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matching costs stand for the similarity scores of pixels compared to the corresponding
pixels along within the disparity space. This taxonomy is based on the observation made
from previous stereo matching applications, and it can be used to develop new algo-
rithms by changing or improving existing methods. These steps are used extensively by
researchers for the enhancement of stereo algorithms [2–6]. However, issues related to
occlusions, slanted planes, regions without texture, repetitive regions, discontinuities, and
illumination differences remain challenging in the latest methods.
Recently, a various number of deep learning-based approaches have been applied to

different computer vision problems like object detection [7], image and object segmen-
tation [8], classification [9], optical flow [10], image retrieval [11], 3D layout [12], image
denoising [13], and stereo matching [14–16]. Matching cost CNN (MC-CNN) [16] was
the first work in the literature that used convolutional neural networks (CNNs) to calcu-
late matching costs. In [16], rather than using hand-crafted features for matching costs,
a Siamese CNN is used to determine the similarity between image patches. For each
pixel, image patches of possible match locations are compared to find the correct match.
Instead of comparing each patch, in content CNN [17], the image patches are compared
with the whole search space to calculate the matching cost. There are several studies
based on patch matching strategy using the CNNs for cost computation [18–21]. These
methods require additional post-processing steps to derive the disparity map, since the
obtaining of the matching cost is a single part of stereo matching. They have been using
CNNs to calculate the matching costs; however, they still needed to utilize a traditional
cost aggregation semi-global matchingmethod [22] followed by the refinement processes.
Therefore, end-to-end network structures are also proposed in the literature for estimat-
ing the disparities directly from the stereo image inputs. The first end-to-end structure
is DispNet [23] which is inspired by FlowNet [10]. The DispNet architecture uses the
encoder-decoder structure, and it was trained coarse-to-fine.
The aim of this work is to improve the quality of disparity maps using the matching

costs. Since stereo image pairs are located in the same horizontal plane and matching
costs are calculated by one-pixel shift for each possible disparity value, the matching costs
would encapsulate sequential information of the neighbor pixels. We try to utilize this
sequential information to improve the performance of previous studies that are using the
matching costs. For this purpose, we propose the cost refinement recurrent neural net-
work (CR-RNN) structure.With this network, it was aimed to increase the accuracy of the
matching costs by using the sequential structure of the costs. To obtain an initial match-
ing cost volume, existing methods could be utilized. The matching cost volume is used as
an input to the recurrent neural network (RNN) structure for each pixel along with the
disparity search space. The output of the RNN is fed into a fully connected (FC) layer.
Then, the FC layer produces the disparity value for selected pixels. We have shown that
the proposed architecture had enhanced the disparity results of different stereo methods.
To show the the performance results, we have tested the CR-RNN on the KITTI 2012 and
KITTI 2015 datasets. According to the test results, it has been shown that performance is
improved compared to the SAD [1], CBCA [24], and MC-CNN [16] methods.
The contributions of the proposed method can be listed as follows:

1 A new approach that improves the error rate of depth value by using sequential
information has been proposed in this work. The proposed structure utilizes the
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information of the continuous disparity values in the search space to refine the
matching costs.

2 The proposed network structure can be used with both traditional and deep
learning-based stereo matching methods if the output is a matching cost volume.
The proposed method can also be used inside the end-to-end networks to enable
refinement of the matching costs.

3 We show that the proposed method could refine the outputs of the existing
methods and achieve an approximately 15% decrease of three-pixel errors on the
KITTI 2012 and KITTI 2015 datasets.

The following sections of this paper has been organized as follows: the related works
are reviewed in Section 2. The proposed CR-RNN structure is presented in Section 3.
Experimental results and the performance are analyzed in Section 4. The conclusion of
the proposed method is stated in Section 5.

2 Related works
In recent years, many studies have been carried out for the solution of the stereomatching
problem. These studies are generally presented under two main headings: conventional
methods and deep learning-based methods. Generally, conventional stereo matching
methods use the four-step taxonomy. In the first step, the matching costs of all pixels
are calculated for all possible disparity by the sum of absolute difference (SAD), the sum
of square difference (SSD), normalized cross-correlation (NCC), census transform, etc.
Local methods [1, 2, 25] sum the matching costs neighboring pixels in different ways and
then use the winner-take-all (WTA) strategy to select disparity with a minimum match-
ing cost. Global algorithms [26, 27] aim to obtain the disparity map by trying to optimize
2D (two dimensional) energy function that includes data and smoothing terms. The best-
known optimization algorithms are belief propagation [26] and graph cut [27]. Global
methods provide more accurate disparity maps with high computational costs compared
to local methods that provide lower accuracy depthmaps with lower computational costs.
The semi-global matching [28] approaches minimize the 2D energy function by multiple
one-dimensional (1D) or linear energy function.
In this section, recent learning-based methods including patch-based matching cost

learning, end-to-end disparity learning, and learning confidence and disparity map
refinement had been reviewed.

2.1 Patch-based matching cost learning

These methods utilize CNNs to compute the matching costs by using the image patches.
Žbontar and LeCun proposedMC-CNN [16] in which two CNN-based Siamese networks
are introduced named as fast (MC-CNN-Fast) and accurate (MC-CNN-Acrt) networks.
Siamese networks consist of two inputs that are reference image patch and comparing
image patch. These inputs are applied to a shared weighted CNN layer to extract fea-
tures. In the output layer, similarity measure could be calculated by using these features.
To train the siamese structure, one positive and one negative training sample is used for
each pixel location. The positive sample is the true matching patch from corresponding
stereo image, while the negative sample is extracted from a mismatch location. They have
minimized hinge loss to train the fast architecture and binary cross-entropy loss to train
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the accurate architecture. In MC-CNN, for a pixel taken in the reference image, match-
ing costs are obtained using the Siamese network for all possible probable pixels that it
can match along the search plane. The matching costs are obtained by calculating the
similarities for all possible disparities space and pixel locations.
Chen et al. [19] used two Siamese structures with different scaled inputs. One of these

Siamese nets receives a full size image patch, while the other Siamese net receive a half
sized (down-sampled) image patch. The feature vectors are obtained at the end of these
Siamese networks and combined with a 1×1×2 convolution process to form a final simi-
larity score. In the training process, a deep regression model is applied and they minimize
the Euclidean loss calculated from the similarity score.
Luo et al. [17] expanded the MC-CNN by using all possible disparities from right image

rather than simply comparing the two patches. They use Siamese network for feature
extraction similar to MC-CNN. The similarity score is calculated by applying the inner
product by shifting the obtained features for each disparity value. This approach sped up
the MC-CNN because it calculates in one go rather than calculating the similarity score
one by one for all possible disparities, and enhanced the performance results. During
training, they minimize the cross-entropy loss.
Brandao et al. [18], proposed a work similar to the one proposed by Luo et al. [17].

The main focus of this work is to investigate the representation learned by the Siamese
networks and enhance the matching performance. To enable this, they propose to use
pooling and de-convolution layers before the correlation process, so that the features
extracted from the Siamese network would contain more visual information which will
enable to better localize the matching pixel location. Thus, the performance of the
network is increased while the run time is reduced.
Zhongjian et al. [29] proposed asymmetric convolutions to improve the quality of the

extracted features on horizontally warped image regions. They replaced the residual con-
volution block in MC-CNN with the asymmetric convolutions. Asymmetric convolution
consists 1 × n sized convolutions instead of the n × n convolution approach, and while
improving the feature quality, it reduces the computational complexity. They showed that
the performance is increased with the help of this change in the residual blocks.

2.2 End-to-end disparity learning

End-to-end disparity learning-based methods use left and right images as inputs and dis-
parity map as output. The first example of end-to-end disparity learning is given byMayer
et al. [23]. The network architecture includes an encoder-decoder architecture that is
inspired by [10] architecture. They introduced three synthetic stereo video datasets which
could be used to train large networks.
The cascade residual learning (CRL) [30] proposed a two-stage network. The first stage

which consists of DispFulNet that extended from DispNet [23] is used to create the initial
disparity map. The second stage is DispResNet that generates a final disparity map by
using multiple information estimated from the initial disparity map, stereo images, error
image, and warped left image. The warped image is a synthesized left image obtain from
an initial disparity map and right image. They used the summation of the outputs of two
stages to generate the final disparity map. It is reported that the learning performance of
the method is more refined with the residual learning.
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GC-Net [31] incorporates contextual information from the cost volume by using 3D
convolutions. Also, a differentiable version of the argmin called soft-argmin is applied to
obtain sub-pixel accuracy disparity map. The 3D convolutions enable to have better the
accuracy while increasing the complexity of the network.
The pyramid stereo matching network (PSM-Net) [14] consists of two parts. The first

part of the network is the spatial pyramid pooling in which a different scale pooling pro-
cess is applied to cost volumes to gain global context information. In the second part of
the network, 3D CNN learns to regulate cost volume using multiple stacked hourglass
networks.
Liang et al. [32] proposed a network architecture that is combining the stereo matching

steps proposed by Scharstein and Szeliski [1]. The network is composed of three stages:
multiscale shared features, initial disparity and correctness of correspondence, and final
disparity stage.
In SegStereo [15], the network has two outputs that are disparity and segmentationmap.

The segmentation information is used as an active guide for disparity estimation through
loss term that includes segmentation and disparity term.
Nguyen and Jeon [33] used both spatial pyramid pooling and dilated convolutional

layer in the feature extraction process. Then, the disparity map is generated by the
stacked encoder-decoder network by using matching costs that are computing the cosine
similarity between feature maps for each disparity level.

2.3 Learning confidence and disparity map refinement

This category focuses on the post-processing of disparity maps, such as mismatch detec-
tion and disparity map refinement. Poggi and Matteuccia [34] obtained the confidence
values through a patch from the disparity map. In their proposed network, there are fully
connected networks after sequential convolution processes to create confidence values of
the disparities. Poggi and Matteuccia [35], unlike their previously mentioned work, the
whole network is constructed by using CNN’s. This network is used only to detect false
disparity values without any further correction step.
Cheng et al. [36] collected the outputs from three different network setups. Two of

these outputs which are called matching cost and confidence values are obtained from
DispNet [23], and the third output is generated by a different network Grad-Net. These
three different outputs are combined with an optimization method to create a disparity
map. The results of the optimization help to correct the disparity values on object corners.
In [37], disparity maps are calculated by using the sequential information from stereo

video frames. The proposed model does not need a ground truth depth maps as super-
vision during training. LSTM networks are used to predict the disparity of the next
frame.
Besides, confidence RNN (C-RNN) [38] estimated the confidences from the match-

ing cost volumes by using long short-term memory (LSTM). The proposed network is
simpler and has a smaller number of trainable parameters compared to the CNN-based
confidence measure method.
As reviewed, there are numerous works in the literature on obtaining depth informa-

tion from stereo images. Apart from the other studies, the proposed method in this study
has a structure that can be used as a refinement layer for both traditional and deep
learning-based works. There are several methods that build confidence maps to help the
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refinement step [36], yet the proposedmethod outputs the refined result directly. In order
to achieve this, the RNN-based structure uses the sequential information of matching
cost volume.

3 Method—cost refinement recurrent neural network
The stereo image pairs have a pre-aligned horizontal axis. The pixels corresponding to
each pixel in the left image are searched in the right image along this axis. The dispar-
ity value is defined as the difference between the matched pixel locations. The disparity
values obtained in the works in the literature are generally not reliable due to the challeng-
ing conditions mentioned earlier. In this study, a network structure has been proposed to
make it possible to correct the wrong disparity values that occur in the studies. In order to
achieve this, it is planned to use sequential information between pixels in a way that has
not been used before in the literature. The proposed network structure uses the knowl-
edge that neighbor pixels along the horizontal axis share the information of trending pixel
values. To exploit this information between pixel values, we have utilized the recurrent
neural networks (RNNs).
In this work, the recurrent network structure is preferred due to the processing ability

of the sequential information of consecutive pixels. The RNN uses a hidden layers as the
memory to store and utilize the dependency between the input and output data at each
time step. The consecutive pixel values are considered as time steps of the RNN. In this
way, the sequential information carried by successive pixels is processed.
The novelty in our work is the use of sequential information on the horizontal axis of

the stereo images by utilizing RNN to enhance the matching costs. As shown in Fig. 1, the
proposed structure is composed of three layers.

1 In the first layer, matching costs are derived from two rectified images. These
images are used as inputs of the stereo method shown in Fig. 1. This method could
be selected from the existing stereo methods that provide matching cost volumes
as output. In this work, three different methods have been used for the stereo
method. The output size of the stereo method should be w × h × d. Where w, h,

Fig. 1 The architecture of the proposed CR-RNN
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and d are the width and height of the input images and the maximum disparity
value, respectively.

2 The second layer utilizes the RNN network, which has an input comprising a cost
vector that includes all disparity values for a given pixel. The inputs of the RNN
network (one hidden state), which has an input (X) comprising a cost vector that
includes all disparity values for a given pixel. The size of the disparities are
dependent on the maximum disparity of the stereo images. The inputs of the RNN
network comprised resizing the matching costs according to the time step size of
the RNN. The input size of the RNN has to be adjusted to match the Eq. (1) when
the time step size changed.

max_disp = time_step_size × number_of_inputs (1)

By changing the time step size, we determine the input size of the RNN. Costs from
stereo method (X) have been resized to [X1 ... Xt−1, Xt] for the different time steps
[1 ... t − 1, t ]. Each input is given to RNNs with a return sequence structure, and Yi
output is obtained for each Xi input. The return sequential structure provides the
interaction of the between the input costs that have sequence structure. The
outputs obtained for each time step [Y1 ... Yt−1, Yt] are combined and transformed
into a single vector.

3 In the third layer, the output of the RNN network is applied to a fully connected
layer to obtain similarity scores for all possible disparity values. The neuron size of
the fully connected layer is equal to the maximum disparity value. Then, the output
of the network is given to the Softmax function. In the last step, the smallest value
is selected as the corresponding pixel’s disparity value (winner-take-all).
Consequently, the resulting architecture of the proposed network is rather simple
and shallow in terms of applicability.

4 Results and discussion
4.1 Stereo methods

In this section, details have been given of the existing stereo methods utilized in the pro-
posed structure. In order to obtain the matching cost volume, three different existing
popular stereo algorithms that are sum of absolute differences (SAD) [1], cross-based cost
aggregation (CBCA) [24], and MC-CNN-Fast [16] are used.
SAD is a simple method for computing the matching cost within a specified area such

as a rectangular or square region.When computing the matching cost for a specified area,
the given Eq. 2 is used.

CSAD(p, d) =
∑

qεNp

|IL(q) − IR(q − d)| (2)

In Eq. 2, IL and IR represent the left and right stereo image pairs, respectively, and d is
the disparity value.
Cross-based cost aggregation is an adaptive window selection method that allows each

pixel to determine an area to collect only from the pixels within the boundaries of the
same object. While determining this adaptive window, a local area is created around each
location consisting of pixels with similar image density values. This window is created in
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two steps. In the first step, it defines the local support zone by creating an upright cross for
each pixel. In the second step, borders are determined by looking at the neighborhoods
between horizontal pixels for each pixel in this upright cross that created for each pixel.
Proposed structures in MC-CNN [16] are used in this work for both training and test-

ing phases of the proposed structure. We utilized the fast architecture for the stereo
method stage of the proposed method to both train and test the CR-RNN network.
We selected the fast method for training due to the lower parameter size compared to
accurate structure. The accurate architecture is utilized only for the testing of CR-RNN.

4.2 Performance measures

In this work, results are analyzed with both quantitative and qualitative comparisons.
For quantitative comparisons, three different metrics were used as the percentage of bad
matching pixels (B) [1], endpoint error (EPE) [39], and global difference (GD) [40]. The
pixel error rates for different threshold values such as 5, 4, 3, and 2 of B values given in
the tables throughout the article. B and EPE are global error measures used to evaluate
the entire disparity map. EPE measures errors in the depth information in terms of pixel
distances. B, however, rates the number of errors and the total number of pixels. As a
result, EPE highlights the weight of major local errors within the total error. EPE is defined
in [39] as given in Eq. 3.

EEPE = 1
N

∑

i∈�

|yip − yig |, (3)

where yg is the ground truth disparity value, yp is the predicted disparity value, and N
is the number of pixels in � that represents pixels with a disparity value.
The GD measure is used to examine errors that occur at different depths. This crite-

rion is especially important for autonomous systems. Autonomous systems using depth
information require the high accuracy of close objects for anti-collision systems, while the
distant objects are important for route determination.
The global difference is a distance-aware metric and is designed to measure the error

between the ground truth depth value and the disparity estimation. The distance aware-
ness is computed using the depth information obtained using disparity, focal length, and
baseline of stereo cameras. The depth map is divided into K points along the depth axis,
and the measuring range Rk for each sampled depth point k is defined as [ k − r, k + r].
Also, unlike EPE and the percentage of bad matching pixels, the distance awareness curve
is drawn using the absolute relative difference (ARD) to distinguish the deviation of
disparity in all possible depth values. The ARD is defined as in Eq. 4.

ARDk = 1
NRk

∑

yg∈Rk

|yp − yg |
yg

(4)

where yg is the ground truth disparity value, yp is the predicted disparity value, and NRk
is the number of pixels in Rk . The global difference (GD)metric was obtained by summing
the ARD values at each sample k points as in Eq. 5.

GD = 1
K

∑

k∈K
ARDk (5)
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In B and EPE test metrics, the accuracy calculation is made on the 2-dimensional
(2D) plane of disparity maps while in the GD metric, the accuracy calculation is made
considering the changes in the depth value in the 3D plane.
We have used different r values for GD value calculations and ARD curves. The value

of r was set to 4 and 0.5 for GD calculations and ARD curves, respectively. The value of r
was set lower for smoother visualization on ARD curves.

4.3 Dataset and training details

We have trained and evaluated our network models using both KITTI 2012 [41] and
KITTI 2015 [42] datasets. These datasets composed rectified outdoor images that can be
used on autonomous driving applications captured using stereo cameras. The datasets
KITTI 2012 and KITTI 2015 contain 194 and 200 rectified images for training and 195
and 200 rectified images for testing, respectively. Each image in these datasets has a
ground truth depth image collected with a laser scanner.
The proposed model was trained by using a weighted cross-entropy loss, and we ini-

tialize the parameters of our network using a Xavier normal initializer. Nadam is selected
as the optimization algorithm. The values of learning rate, β1 and β2 parameters of the
Nadam algorithm are set to 0.001, 0.9, and 0.999, respectively. The batch size is 128 for
each iteration. The network is trained for 15 epochs on an NVIDIA GTX 2080TI and
implemented using TensorFlow framework. The weighted cross-entropy loss function is
defined in [17, 21] as given Eq. 6.

loss(y, yg) =
∑

yi
P(yi, yg) · log eyi∑

j eyj
, (6)

where yg refers to ground truth disparities, and P(yi, yg) refers to smooth target dis-
tribution, centered around the ground truth yg . The P(yi, yg) is defined as in Eq. 7.

P(yi, yg) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1, if |yi − yg | ≤ 1
λ2, if 1 < |yi − yg | ≤ 2
λ3, if 2 < |yi − yg | ≤ 3
0, otherwise.

(7)

The values of the parameters λ1, λ2, and λ3 are set to 0.5, 0.2, and 0.05, respectively.
Before starting the training phase, the KITTI 2012 and KITTI 2015 datasets were exam-

ined to explore the distribution of depth values. The results show that the vast majority
of depth values are between 0 and 100 as shown in Fig. 2.
Because of this distribution, the network learns to produce depth information only

in the range of 0 − 100. As a result, the trained network only generates depth val-
ues for 0 − 100 range. In order to deal with this situation, during the training of the
proposed network, we have utilized data augmentation only for the training data. Data
augmentation has proven to be a very important technique that enables better learn-
ing in deep networks when the data has unbalanced distribution. The data used during
the training has been expanded by randomly shifting the input data in the range of
max_disparity/2 − max_disparity. It is avoided to use of different augmentation tech-
niques in order not to alter the disparity values incorrectly. The disparity distribution on
the KITTI 2015 test set at the end of the training with and without the augmentation pro-
cess is given in Fig. 3 which is filtered with a moving average filter with a width of 5, for
better visualization.
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Fig. 2 Disparity histograms of KITTI 2012 and KITTI 2015 training datasets

Fig. 3 Disparity distribution of the training with augmentation and training without augmentation, on the
KITTI 2015 test set
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Table 1 Three pixel test error rates for different split ratios of KITTI 2012 dataset

B (%)> 3px

Train-Valid.-Test (%) MC-CNN-Fast Ours

70-20-10 19.45 18.79

80-10-10 17.90 16.77

In this study, the resulting proposed network is tested on the online test dataset given
on the website of the KITTI 2012 and KITTI 2015 datasets. In order to determine the best
parameters and enable faster training and validation processes in the development of the
proposed network, the training dataset is split as training, validation, and testing.
Two different split ratios were used to examine the learning capabilities of the proposed

structure. The MC-CNN-based stereo method is used to determine the results. Three
pixels error ratios are given in Tables 1 and 2 for both split sets.
Tables 1 and 2 show that both of the networks are trained better with the increasing

size of the training set. This shows that to get better results, the training dataset must be
larger.
For the rest of the paper, we used the 80, 10, and 10% splitting ratios for training, valida-

tion, and testing, respectively. Also, if it is not stated that the online test dataset available
on the website is used, the test results are obtained by using the test dataset that we divide.

4.4 Parameter optimization

The RNN structure proposed in this work has two main parameters that can be adjusted.
The first parameter is the hidden layers of the RNN. This parameter directly changes
the RNN structure and affects the parameter size of the model. The second parameter is
the time step size of the RNN. This parameter depends on the maximum disparity value
which is 192 for both datasets. To select the best parameter values for the model, we
applied the leave-one-out approach. Firstly, the proposed architecture has been trained
and tested with changing sizes of hidden layers while keeping the time step size constant.
After finding the appropriate hidden layers, the optimum value of the time step size was
determined by using this hidden layers. Also, the MC-CNN-based stereo method is used
in this section to determine the parameters of the structure.
The results are given in Table 3 that are obtained as a result of changing the hidden

layers by keeping time step size constant at the value of 2.
According to Table 3, the error rate B is decreasing with the increasing number of hid-

den layers. Therefore, the number of the hidden layers is taken as 256. After fixing the size
of hidden layers to 256, training and test procedures were carried out to determine the
time step size. The results for different time step size values with the related error metrics
are given in Tables 4 and 5 for the KITTI 2012 and KITTI 2015 test datasets, respectively.

Table 2 Three pixel test error rates for different split ratios of KITTI 2015 dataset

B (%)> 3px

Train-Valid.-Test (%) MC-CNN-Fast Ours

70-20-10 15.54 14.70

80-10-10 13.77 12.15
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Table 3 Network performance values for the changing the hidden layers using a fixed time step
number

Hidden Layers

32 64 128 256 512

Number of 16,608 35,072 78,144 188,864 508,608

Paramaters

Error rate 11.97 11.35 11.28 11.23 11.30

B (%) > 3px

As can be seen from the Table 4, the number of time steps must be kept low to create
a network with lower complexity on the KITTI 2012 dataset. Otherwise, the complex-
ity of the network will increase linearly. Table 5 shows similar results as Table 4 when
bad matching pixel errors are considered. In addition, according to the bad matching
pixel ratios to achieve better performance, the number of time step value should be
selected high. Consequently, the optimum value with respect to network complexity and
performance needs to be determined depending on the problem.
In the following sections, quantitative and qualitative comparisons are examined. For

the quantitative comparisons, the optimal network structures were used in terms of both
performance (CR-RNNP) and parameter size (CR-RNNC). In qualitative comparisons,
the optimum network structure was used on the basis of performance in order to enable
better visualization.

4.5 Quantitative comparisons

In order to show the refinement performance of the proposed network (CR-RNN), three
different methods as SAD, CBCA, andMC-CNN-Fast are used as stereo method. In addi-
tion, the effectiveness of the refinement has been measured using the MC-CNN-Acrt
method which has more performance and a more complex structure.
The quantitative comparisons are carried out for both the parameter settings that give

the best performance and minimum parameter size. Table 6 is given for the comparison
of parameter sizes of the network structured solutions. SAD- and CBCA-based stereo
methods are not included in this table as they are not network-based solutions.
According to Table 6, when the total number of parameters is compared, both of the

proposed CR-RNN architectures use more parameters than the MC-CNN-Fast structure
and fewer parameters than the MC-CNN-Acrt structure.
In Tables 7 and 8, the training and validation results are given for different stereo meth-

ods used in the proposed structure. The results includes different pixel error rates, EPE,
and GD (%) values for comparison.

Table 4 The performance of the proposed network with different time step size values on KITTI 2012
test dataset

Time steps Input sizes Param. counts B (%)> 5px B (%)> 4px B (%)> 3px B (%)> 2px

1 192 164,288 13.53 14.36 15.65 18.66

2 96 188,864 13.29 14.19 15.52 18.47

3 64 229,824 13.33 14.13 15.41 18.52

4 48 274,880 13.21 14.11 15.37 18.19

8 24 465,344 12.95 13.86 15.14 18.01

12 16 659,904 12.89 13.78 15.13 18.26
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Table 5 The performance of the proposed network with different time step size values on KITTI 2015
test dataset

Time steps Input sizes Param. counts B (%)> 5px B (%)> 4px B (%)> 3px B (%)> 2px

1 192 164,288 9.24 9.95 11.24 14.17

2 96 188,864 9.10 9.88 11.23 13.83

3 64 229,824 9.31 10.04 11.24 13.85

4 48 274,880 9.16 9.90 11.15 13.93

8 24 465,344 9.04 9.80 11.13 13.92

12 16 659,904 9.02 9.76 10.95 13.37

Table 6 Comparison of parameter sizes of Network based methods

Architectures Total number of paramater

MC-CNN-Fast 111,424

MC-CNN-Acrt 870,449

CR-RNNC 164,288

CR-RNNP 659,904

MC-CNN-Fast + CR-RNNC 275,712

MC-CNN-Fast + CR-RNNP 771,328

Table 7 The comparison of the CR-RNN architectures with respect to original methods in terms of
total parameters and different error rates on KITTI 2012 test set

Architectures B (%) EPE GD(%)

> 5px > 4px > 3px > 2px

MC-CNN-Fast 16.03 16.80 17.91 20.14 7.4006 35.12

MC-CNN-Acrt 13.18 13.81 14.76 16.86 6.5936 35.13

MC-CNN-Fast + CR-RNNC 13.53 14.36 15.65 18.66 4.8488 26.84

MC-CNN-Fast + CR-RNNP 12.89 13.78 15.13 18.26 4.4290 30.10

SAD 31.90 33.44 35.34 37.59 13.1638 74.15

SAD + CR-RNNP 30.51 31.73 33.40 35.63 12.9390 72.47

CBCA 29.94 31.42 33.24 35.46 12.3728 68.13

CBCA + CR-RNNP 25.42 26.75 28.57 31.10 10.4674 50.10

Table 8 The comparison of the CR-RNN architectures with respect to original methods in terms of
total parameters and different error rates on KITTI 2015 test set

Architectures B (%) EPE GD(%)

> 5px > 4px > 3px > 2px

MC-CNN-Fast 11.79 12.51 13.74 16.34 5.8471 35.46

MC-CNN-Acrt 9.65 10.21 11.21 13.67 5.1775 35.69

MC-CNN-Fast + CR-RNNC 9.24 9.95 11.24 14.17 3.1388 27.60

MC-CNN-Fast + CR-RNNP 9.02 9.76 10.95 13.37 4.6316 22.23

SAD 27.81 29.92 32.73 37.10 9.8349 62.01

SAD + CR-RNNP 26.72 28.42 30.77 34.71 9.6686 60.74

CBCA 25.88 27.91 30.64 35.05 9.0861 56.12

CBCA + CR-RNNP 21.24 23.03 25.74 30.53 7.3726 45.43
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The proposed CR-RNN architectures decreased the bad matching pixel ratios in
all metrics given in tables with respect to the corresponding original methods. Fur-
thermore, the CR-RNNC performs closer to the MC-CNN-Acrt, while the CR-RNNP
performs much better than the MC-CNN-Acrt. When the EPE and GD values consid-
ered, CR-RNNC and CR-RNNP show much superior performance compared to both of
the MC-CNN networks. These comparisons show that the proposed network structure
gives better results in both the disparity maps in the 2D plane and the depth maps in the
3D plane. Also, the SAD + CR-RNNP and CBCA + CR-RNNP performs better than the
original methods.
The results for the original KITTI 2012 and KITTI 2015 online test datasets are given

in Table 9.
As seen in the Table 9, it is observed that the performance in both datasets has been

increased significantly. According to the results, our proposed method made an improve-
ment of approximately 15% on average. In addition, there are significant improvements
in the KITTI 2012 dataset for all bad pixel rates. Similarly, better performance has been
achieved for the background and overall regions of the KITTI 2015 dataset. However,
for the MC-CNN result, in the foreground region, it is seen that MC-CNN-Fast results
are improved and performance values close to MC-CNN-Acrt are obtained. When given
the matching costs obtained from CBCA to our network, it is seen that the results are
improved in all cases.

4.6 Qualitative comparisons

For qualitative comparison, both ARD curves on test datasets and disparity maps on
online test datasets are used. The comparison of ARD curves on KITTI 2012 and KITTI
2015 test datasets is given in Fig. 4a, b.
As shown in the figure, the proposed network structure gives quite low error rates in

the 3D plane compared to the other models on both test datasets. With the increase
in depth values, MC-CNN architectures perform similarly while the proposed method
outperforms these networks.
The other qualitative comparisons are given in Fig. 5. On the left side of the figures, left

input images are given from both datasets. In Fig. 5, the changing colors in error maps
are scaled linearly between black and white. The black color means low error rates and
the white color means high error rates. In Fig. 6 the changing colors in error maps show
increasing error rates of disparities from dark blue to light blue, and light red to dark red.
MC-CNN, CBCA, and the refined results using CR-RNN on the online test benchmark

in both dataset are given in the Figs. 5a, b, and 6a, b, respectively. The first row of Fig. 5

Table 9 The comparison of the CR-RNN architectures with respect to original methods in terms of
and error rates (%) on KITTI 2012 and KITTI 2015 online test set

KITTI 2012 KITTI 2015

Architectures > 5px > 4px > 3px > 2px D1-bg D1-fg D1-all

MC-CNN-Fast 15.77 16.52 17.58 19.72 15.38 28.84 17.62

MC-CNN-Acrt 14.17 14.77 15.65 17.62 13.29 28.29 15.79

MC-CNN-Fast + CR-RNNP 13.33 13.83 14.54 15.99 12.98 28.36 15.54

CBCA 31.00 32.52 34.51 37.95 30.81 35.51 31.59

CBCA + CR-RNNP 26.58 27.97 29.98 33.92 26.56 30.71 27.25
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Fig. 4 The distance-aware ARD curves on KITTI 2012 and KITTI 2015 test datasets

shows the left input image and disparity map result from left to right. The second row
visualizes the error maps for the above-given disparity maps with respect to the ground
truth disparity map. In the third row, the zoomed regions of the error maps are visualized
in the same order.
The disparity maps in these figures show that the proposed method improved the

smooth transition between horizontal disparity values compared to both MC-CNN
model and CBCA models. The disparity maps generated by the proposed method have
less noisy regions compared to the other models. Also, it can be clearly seen from the
error images that the proposed method performs better on the road surfaces and object
boundaries. This result is expected due to the use of the sequential information of RNNs.
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Fig. 5 Disparity and error map results for MC-CNN, CBCA, and CR-RNN on the online KITTI 2012 dataset

When the error maps are considered, it is clear that the proposed method has visual
improvements in a wider area. Yet, the reduction in numerical errors is not high, as
the proposed network structure cannot correct errors locally in several regions on the
disparity map.

5 Conclusion
In this paper, a novel approach has been introduced for enhancing the disparity map by
improving the matching costs for stereo images. We have utilized RNN to take advantage

Fig. 6 Disparity and error map results for MC-CNN, CBCA, and CR-RNN on the online KITTI 2015 dataset
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of the information between sequential pixels. The proposed network adds a few param-
eters compared to the well-known method MC-CNN-Fast. In quantitative comparisons,
the proposed method increased the performance of the MC-CNN-Fast method in both
datasets. The performance of the MC-CNN-Acrt has also been increased considerably in
almost all test results. In addition, the success of the proposed network has been shown
on the matching costs obtained through conventional methods such as CBCA and SAD.
Likewise, the qualitative result makes it more visible of the enhancement of the disparity
maps. These results prove that the proposed method can be used to improve dispar-
ity values on object boundaries and at the same time low-textured areas like roads. The
proposed method has a simple and shallow structure. Hence, it can easily be adapted to
methods that give matching costs as outputs.
As future work, it can be considered implementing long short-term memory (LSTM)

and gated recurrent unit (GRU)-based modules to further improve the performance.

Abbreviations
ARD: Absolute relative difference; B: Bad matching pixels; CBCA: Cross-based cost aggregation; CNN: Convolutional
neural networks; CRL: Cascade residual learning; CR-RNN: Cost refinement recurrent neural network; C-RNN: Confidence
RNN ; EPE: Endpoint error; GD: Global difference; GRU: Gated recurrent units; LSTM: Long short-term memory; MC-CNN:
Matching cost CNN; NCC: Normalized cross-correlation; PSM-Net: Pyramid stereo matching networks; RNN: Recurrent
neural networks; SAD: Sum of absolute difference; SSD: Sum of square difference; WTA: Winner-take-all; 1D:
One-dimensional; 2D: Two-dimensional; 3D: Three-dimensional

Acknowledgements
No other acknowledgements.

Authors’ contributions
AE provides data enhancement and codes the total algorithm. Dr. MP designs the total algorithm. AE and MP analyzes
the results and wrote the paper. The authors read and approved the final manuscript.

Authors’ information
1. Alper Emlek is currently a Ph.D. student at Nigde Omer Halisdemir University. His research interests include digital
image processing, artificial intelligence, and embedded systems.
2. Murat Peker is currently an assistant professor at the Department of Electrical and Electronics Engineering in Nigde
Omer Halisdemir University. His research interests include digital signal, image and video processing, embedded
systems, and soft computing.

Funding
This work is supported by Nigde Omer Halisdemir University Research Project Unit under the research grant of MMT
2019/7-BAGEP.

Availability of data andmaterials
All data and materials are mentioned in the references.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 6 October 2020 Accepted: 9 March 2021

References
1. D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J.

Comput. Vis. 47(1), 7–42 (2002)
2. A. Emlek, M. Peker, K. F. Dilaver, in International Artificial Intelligence and Data Processing Symposium (IDAP), Variable

window size for stereo image matching based on edge information (IEEE, Malatya, 2017), pp. 1–4
3. Q. Yang, Stereo matching using tree filtering. IEEE Trans. Pattern. Anal. Mach. Intell. 37(4), 834–846 (2015)
4. C.-S. Huang, Y.-H. Huang, D.-Y. Chan, J.-F. Yang, Shape-reserved stereo matching with segment-based cost

aggregation and dual-path refinement. EURASIP J. Image Video Process. 2020, 38 (2020)
5. X. Huang, Y.-J. Zhang, An o(1) disparity refinement method for stereo matching. Pattern Recog. 55, 198–206 (2016).

https://doi.org/10.1016/j.patcog.2016.01.025
6. M. Poggi, F. Tosi, S. Mattoccia, Learning a confidence measure in the disparity domain from o(1) features. Comp.

Vision Image Underst. 193, 102905 (2020). https://doi.org/10.1016/j.cviu.2020.102905

https://doi.org/10.1016/j.patcog.2016.01.025
https://doi.org/10.1016/j.cviu.2020.102905


Emlek and Peker EURASIP Journal on Image and Video Processing         (2021) 2021:11 Page 18 of 19

7. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, in Conference on Computer Vision and Pattern Recognition (CVPR), You
only look once: unified, real-time object detection (IEEE, Las Vegas, 2016), pp. 779–788

8. H. Yang, B. Fan, L. Guo, Anchor-free object detection with mask attention. EURASIP J. Image Video Process. 2020, 29
(2020)

9. H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, in Conference on Computer Vision and Pattern Recognition (CVPR), Pyramid scene
parsing network (IEEE, Honolulu, 2017), pp. 6230–6239

10. A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, T. Brox, in International
Conference on Computer Vision (ICCV), Flownet: learning optical flow with convolutional networks (IEEE, Santiago,
2015), pp. 2758–2766

11. C. Yan, B. Gong, Y. Wei, Y. Gao, Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern. Anal.
Mach. Intell., 1–1 (2020). https://doi.org/10.1109/TPAMI.2020.2975798

12. C. Yan, B. Shao, H. Zhao, R. Ning, Y. Zhang, F. Xu, 3d room layout estimation from a single rgb image. IEEE Trans.
Multimed. 22(11), 3014–3024 (2020). https://doi.org/10.1109/TMM.2020.2967645

13. C. Yan, Z. Li, Y. Zhang, Y. Liu, X. Ji, Y. Zhang, Depth image denoising using nuclear norm and learning graph model.
ACM Trans. Multimedia Comput. Commun. Appl. 16(4) (2020). https://doi.org/10.1145/3404374

14. J. Chang, Y. Chen, in Conference on Computer Vision and Pattern Recognition, Pyramid stereo matching network (IEEE,
Salt Lake City, 2018), pp. 5410–5418

15. G. Yang, H. Zhao, J. Shi, Z. Deng, J. Jia, in Computer Vision – ECCV 2018. ed. by V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, Segstereo: exploiting semantic information for disparity estimation (Springer, Cham, 2018), pp. 660–676

16. J. Zbontar, Y. LeCun, in Conference on Computer Vision and Pattern Recognition (CVPR), Computing the stereo
matching cost with a convolutional neural network (IEEE, Boston, 2015), pp. 1592–1599

17. W. Luo, A. G. Schwing, R. Urtasun, in Conference on Computer Vision and Pattern Recognition (CVPR), Efficient deep
learning for stereo matching (IEEE, Las Vegas, 2016), pp. 5695–5703

18. P. Brandao, E. Mazomenos, D. Stoyanov, Widening Siamese architectures for stereo matching. Pattern Recogn. Lett.
120, 75–81 (2019)

19. Z. Chen, X. Sun, L. Wang, Y. Yu, C. Huang, in International Conference on Computer Vision (ICCV), A deep visual
correspondence embedding model for stereo matching costs (IEEE, Santiago, 2015), pp. 972–980

20. S. Kim, D. Min, S. Kim, K. Sohn, Unified confidence estimation networks for robust stereo matching. IEEE Trans. Image
Process. 28(3), 1299–1313 (2019)

21. A. Shaked, L. Wolf, in Conference on Computer Vision and Pattern Recognition (CVPR), Improved stereo matching with
constant highway networks and reflective confidence learning (IEEE, Honolulu, 2017), pp. 6901–6910

22. H. Hirschmuller, Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern. Anal. Mach.
Intell. 30(2), 328–341 (2008)

23. N. Mayer, E. Ilg, P. Hässer, P. Fischer, D. Cremers, A. Dosovitskiy, T. Brox, in Conference on Computer Vision and Pattern
Recognition (CVPR), A large dataset to train convolutional networks for disparity, optical flow, and scene flow
estimation (IEEE, Las Vegas, 2016), pp. 4040–4048

24. K. Zhang, J. Lu, G. Lafruit, Cross-based local stereo matching using orthogonal integral images. IEEE Trans. Circ. Syst.
Video Technol. 19(7), 1073–1079 (2009). https://doi.org/10.1109/TCSVT.2009.2020478

25. A. Emlek, M. Peker, M. K. Yalçin, in 26th Signal Processing and Communications Applications Conference (SIU),
Improving the cost-volume based local stereo matching algorithm (IEEE, Izmir, 2018), pp. 1–4

26. T. Meltzer, C. Yanover, Y. Weiss, in International Conference on Computer Vision (ICCV), Globally optimal solutions for
energy minimization in stereo vision using reweighted belief propagation (IEEE, Beijing, 2005), pp. 428–435

27. V. Kolmogorov, R. Zabih, in Handbook of Mathematical Models in Computer Vision. ed. by N. Paragios, Y. Chen, and O.
Faugeras, Graph cut algorithms for binocular stereo with occlusions (Springer, Boston, 2006), pp. 423–437

28. R. Spangenberg, T. Langner, S. Adfeldt, R. Rojas, in 2014 IEEE Intelligent Vehicles Symposium Proceedings, Large scale
semi-global matching on the cpu, (2014), pp. 195–201. https://doi.org/10.1109/IVS.2014.6856419

29. Z. Ma, D. Huang, B. Li, X. Yuan, Asymmetric learning for stereo matching cost computation. IEICE Trans. Inf. Syst.
E103.D(10), 2162–2167 (2020). https://doi.org/10.1587/transinf.2020EDP7002

30. J. Pang, W. Sun, J. S. Ren, C. Yang, Q. Yan, in International Conference on Computer VisionWorkshops (ICCVW), Cascade
residual learning: a two-stage convolutional neural network for stereo matching (IEEE, Venice, 2017), pp. 878–886

31. A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach, A. Bry, in International Conference on
Computer Vision (ICCV), End-to-end learning of geometry and context for deep stereo regression (IEEE, Venice, 2017),
pp. 66–75

32. Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou, J. Zhang, in Conference on Computer Vision and Pattern
Recognition, Learning for disparity estimation through feature constancy (IEEE, Salt Lake City, 2018), pp. 2811–2820

33. T. P. Nguyen, J. W. Jeon, Wide context learning network for stereo matching. Sig. Process. Image Commun. 78,
263–273 (2019)

34. M. Poggi, S. Mattoccia, in Proceedings of the BritishMachine Vision Conference (BMVC), Learning from scratch a
confidence measure (BMVA Press, New York, 2016), pp. 46–14613

35. M. Poggi, S. Mattoccia, in Conference on Computer Vision and Pattern Recognition (CVPR), Learning to predict stereo
reliability enforcing local consistency of confidence maps (IEEE, Honolulu, 2017), pp. 4541–4550

36. F. Cheng, X. He, H. Zhang, Learning to refine depth for robust stereo estimation. Pattern Recog. 74, 122–133 (2018)
37. Y. Zhong, H. Li, Y. Dai, in Computer Vision – ECCV 2018. ed. by V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,

Open-world stereo video matching with deep rnn (Springer, Cham, 2018), pp. 104–119
38. M. Gul, M. Bätz, J. Keinert, in Proceedings of the British Machine Vision Conference (BMVC), Pixel-wise confidences for

stereo disparities using recurrent neural networks (BMVA Press, Cardiff, 2019), pp. 1–13
39. S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, R. Szeliski, A database and evaluation methodology for optical

flow. Int. J. Comput. Vis. 92, 1573–1405 (2011)
40. G. Yang, X. Song, C. Huang, Z. Deng, J. Shi, B. Zhou, in Conference on Computer Vision and Pattern Recognition (CVPR),

Drivingstereo: a large-scale dataset for stereo matching in autonomous driving scenarios (IEEE, Long Beach, 2019),
pp. 899–908

https://doi.org/10.1109/TPAMI.2020.2975798
https://doi.org/10.1109/TMM.2020.2967645
https://doi.org/10.1145/3404374
https://doi.org/10.1109/TCSVT.2009.2020478
https://doi.org/10.1109/IVS.2014.6856419
https://doi.org/10.1587/transinf.2020EDP7002


Emlek and Peker EURASIP Journal on Image and Video Processing         (2021) 2021:11 Page 19 of 19

41. A. Geiger, P. Lenz, R. Urtasun, in Conference on Computer Vision and Pattern Recognition, Are we ready for
autonomous driving? the kitti vision benchmark suite (IEEE, Providence, 2012), pp. 3354–3361

42. M. Menze, A. Geiger, in Conference on Computer Vision and Pattern Recognition (CVPR), Object scene flow for
autonomous vehicles (IEEE, Boston, 2015), pp. 3061–3070

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Abstract
	Keywords

	Introduction
	Related works
	Patch-based matching cost learning
	End-to-end disparity learning
	Learning confidence and disparity map refinement

	Method—cost refinement recurrent neural network
	Results and discussion
	Stereo methods
	Performance measures
	Dataset and training details
	Parameter optimization
	Quantitative comparisons
	Qualitative comparisons

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

