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Abstract

The false positive and false negative rates of current image localization methods in
gynecological lesion area are high because the effectiveness is affected by random
noise. Therefore, by using Bhattacharyya coefficient-based scale-invariant feature
transform (B-SIFT), a novel localization method of lesion area in gynecological
ultrasound image is proposed in this paper. Firstly, Rayleigh mean filtering is used to
suppress the noise in the ultrasound image based on Rayleigh distribution
characteristics of the noise. Then, the segmentation method of the lesion region is
designed by using the scale-invariant feature transform (SIFT). Furthermore, the
feature extraction function B-SIFT is proposed to locate the lesion region based on
the Bhattacharyya coefficient. Finally, two lesion characteristics of Bhattacharyya
coefficients are defined, and the B-SIFT-based feature region descriptors are obtained
by constructing an eigenvector normalized based on the Bhattacharyya coefficients.
Experimental results show that the proposed method has a high positioning
accuracy, strong recall ratio, low energy consumption, and low time consumption,
which is more effective and feasible than the traditional method for localization of
lesions.

Keywords: Gynecology, Ultrasound image, Lesion area, Localization, Rayleigh
distribution, Noise suppression, Bhattacharyya coefficient

1 Introduction
Ultrasound image diagnosis is a medical diagnosis that uses reflected or scattered echo

information of ultrasound to detect lesion areas in the human body based on the

difference of acoustic impedance in different human tissues [18]. It greatly im-

proves the objectivity and accuracy of diagnosis by comparing with traditional

diagnosis. Meanwhile, the diagnosis based on ultrasonic transmission currently has

less damage to the human body than other medical imaging methods such as

computed tomography, magnetic resonance imaging, and radionuclide imaging. Es-

pecially, ultrasound diagnosis is widely used in the domain of gynecological diag-

nosis because it has many good characteristics such as real-time, non-invasive,

inexpensive, portable, and painless [7, 8].

At present, there are several effective traditional segmentation methods for multi-

resolution image which are generated by three-dimensional (3D) computed tomography
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(CT). One kind of method is based on source-point mapping scanning. First, the global

optimal segmentation of multi-resolution 3D CT images is calculated based on the micro-

partial equations of the C-V method. Then, the symbol distance function is generated by

using the source point mapping scanning method. In order to improve the computational

stability and segmentation effect, the method combines the fast-step method to generate

the symbol table. However, the segmentation time is very long because it requires

multiple iterations to obtain a better image segmentation effect [9].

Another kind is multi-resolution 3D CT image segmentation method based on Hough

transform theory. First, the parameter space of the image is subdivided step by step

according to the inverse transformation of Hough transform theory. Then, the region

without the straight line portion is gradually excluded with the calculated endpoint and

length of the CT image curve contour. This kind of method is computationally intensive;

however, the required storage capacity is large [4].

Moreover, another kind of segmentation method for multi-resolution 3D CT image

is based on geometric deformation [6]. First, the inner and outer homogeneous regions

of the multi-resolution 3D CT image are located. Then, the surface evolves along the

second derivative of the gradient direction of the image by edge energy of the target.

This method has better adaptability to background noise; however, the time complexity

is very high.

In summary, current recognition and localization of ultrasound image lesion have

certain limitations. Therefore, in order to find a segmentation method with short time/

low complexity and small storage, this paper proposes a novel method in the detection

and positioning of gynecological lesions. Section 2 introduces related work. Section 3

provides materials and methods in this paper. Section 4 shows and discusses the

results. Section 5 concludes the whole paper.

2 Related work
Recently, the efficacy of positron emission tomography (PET)/magnetic resonance

imaging (MRI) fusion imaging in the diagnosis of pelvic recurrence and metastasis

after gynecologic tumor surgery was explored [17]. This study analyzed postopera-

tive PET/computed tomography (CT) and pelvic MRI images in 38 patients with

gynecologic malignancies. PET and MRI images were fused, and the value of PET/

CT, pelvic MRI, and PET/MRI fusion in the diagnosis of local pelvic recurrence

and metastasis was compared to achieve lesion detection and localization. In the

meantime, a multi-view coordinate system based on breast physiology features was

established for multi-view detection and analysis of breast X-ray lesions [22, 23]. First,

the mammogram multi-view analysis coordinate system was established by the extraction

of typical physiological features of the nipple, chest muscle, and ellipse fitting of the breast

edge in the axial, mid-oblique view image. Then, gynecological lesion recognition was

achieved by nonlinearly mapping the bilateral four-views of the mammogram to the same

coordinate frame. The evidence-based method was explored for finding the most prone to

lesions in the cervix and looking for a random examination of the cervix under the naked

eye [15]. It was based on retrospective analysis of biopsy position in patients with high-

grade squamous intraepithelial lesion (HSIL) diagnosed by colposcopy-guided biopsy.

During the course of the study, the location and number of biopsy of patients with HSIL

under the guidance of colposcopy-guided cervical biopsy from January 1, 2015, to
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December 31, 2015, in one hospital were retrospectively analyzed. The results showed

colposcopy-guided biopsy to diagnose 1096 cases of cervical HSIL, a total of 3563 points,

an average of 3.25 points per case. In additional, colposcopy was an adjunct to early

screening for cervical cancer and precancerous lesions [2]. The significance of various col-

poscopy abnormal images in cervical screening was highlighted in the article. The risk

rankings of these abnormal images were as follows: acetic acid white epithelium, punctate

blood vessels, cuff-like gland openings, inlays, iodine test without staining, internal bor-

ders, ridge-like signs, and shaped blood vessels. They needed to be processed according to

their risk.

There were certain deficiencies in the above research results. For example, images

were not processed in the method of image detection and localization, which results in

both higher false positive and false negative rates of recognition and localization. In

addition, positioning by the naked eye also had high false positive and false negative

rate to some extent. Therefore, one improved method was proposed to solve the short-

comings of the above-related research. The innovation of our proposed method in this

paper was as follows.

(1) The Rayleigh mean filtering method was used to suppress and process the noise in

gynecological ultrasound images, which laid a foundation for improving positioning

accuracy and positioning efficiency.

(2) B-SIFT was introduced to detect and locate the lesion area using the Bhattacharyya

coefficient based on the SIFT feature detection.

(3) The rationality and reliability of the proposed method were verified by the false

positive and false negative rates in the experiment.

3 Materials and methods
3.1 Ultrasound image processing

In order to decrease the high false positive and false negative rates, the Rayleigh mean

is used to filter the image to remove the location interference term in this paper. That

is, when assuming that the region of interest has been determined, the Rayleigh mean

filtering method is used to suppress noise in the ultrasound image based on Rayleigh

distribution features of the noise.

The effect of noise on the signal is generally modeled as a form of multiplicative

noise in the filtering process by Eq. 1.

v ¼ u∙η ð1Þ

where v represents the noise observation signal, u represents no noise signal, and η

represents the multiplicative noise component.

Since the influence of the additive noise component is small compared to the multi-

plicative part, it is generally not considered. The Rayleigh distribution model of the

noise can be expressed as Eq. 2 in the multiplicative form.

ψ xð Þ ¼ x
σ2n

exp −
x2

2σ2n

� �
ð2Þ

where σn represents the shape parameter and x denotes the total of multiplicative

noise.
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If u(i, j) in Eq. 1 is estimated in the ultrasound image, it is assumed that u(i, j) is a

constant value β for the estimated observation window Ω, which means that u(i, j) ≈ β

for ∀(i, j)∈Ω. Therefore, ∀(i, j)∈Ω, σv = σηβ for every v(i, j), where σv is the parameter

of Rayleigh distribution of v(i, j). Therefore, the maximum likelihood estimation expres-

sion of σv can be defined as Eq. 3.

bσv ¼ 1
2 Ωj j

X
i; jð Þ∈Ω

v2 i; jð Þ
0@ 1A1

2

ð3Þ

where |Ω| represents the potential of Ω. The maximum likelihood estimate of u(i, j)

can be expressed as Eq. 4.

û ic; jc
� � ¼ β̂ ¼ bσv ση

� � − 1 ¼ 1
ση

1
2 Ωj j

X
i; jð Þ∈Ω

v2 i; jð Þ
0@ 1A1

2

ð4Þ

where (ic, jc) represents the position of the estimated pixel.

The relative value of the noiseless signal can be defined as Eq. 5 according to the

above calculation and analysis.

ur ic; jc
� � ¼ 1

2 Ωj j
X
i; jð Þ∈Ω

v2 i; jð Þ
0@ 1A1

2

ð5Þ

In Eq. 5, ση is a constant amount for gynecological ultrasound images.

Then, the relative standard deviation of the local noise-free pixel values in the obser-

vation window Ω with center (ic, jc) is calculated by Eq. 6.

RSD ic; jc
� � ¼ 1

Ωj j
X

mc;ncð Þ∈Ω
ur mc; ncð Þ − 1

Ωj j
X

pc;qcð Þ∈Ω
ur pc; qcð Þ

24 3520@ 1A
1
2

ð6Þ

Equation 6 shows that the noise-free image has similar intensity in the observation

window with a relatively small value of RSD(ic, jc), and the region is relatively smooth

in the absence of noise. In the meantime, a relatively large RSD(ic, jc) value indicates

that there are some structures in the area that need to be maintained.

Then, we introduce α-mean filtering to achieve adaptive removal of ultrasound image

noise based on the application of RSD.

The output fα of α-mean filtering for a set of ascending sets {g(1), g(2),…, g(n)} can be

defined as Eq. 7

f α ¼
1

n − 2 αn½ �
Xn − αn½ �

j¼1þ αn½ �
g jð Þ ð7Þ

where [ ] represents the rounding operation, and α∈(0, 0.05] represents the balance

degree of the filter. When α tends to 0, the α-means filter approaches a mean filter

used to smooth the image; when α approaches 0.5, the α-mean filter’s characteristics

approximate a median filter, thereby maintaining the structure in the image [11, 12].
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A logarithmic form in Eq. 8 is proposed to establish the relationship between

RSD and α to make the processing of α-means filtering more prone to near-zero

values

α ¼ loga RSDþ bð Þ þ c ð8Þ

where a, b, and c represent the filter influence parameters.

The input ultrasound image follows the steps below to achieve adaptive noise

suppression. First, the value of RSD is calculated based on Eq. 6. Then, the value of α is

obtained based on Eq. 8. Finally, the corresponding α-means filtering is finished to

suppress noise in the ultrasound image adaptively.

3.2 Segmentation of lesions

A multi-resolution ultrasound image is segmented by using graph cut theory into the

network map which is constructed by gray and spatial information of the image [21].

The graph cut theory constructs an energy function and then uses combinatorial

optimization techniques to minimize the energy function. In this theory. an image

segmentation problem is a typical combination optimization problem for binary label

of pixels with foreground/background [10]. It transforms the labeling problem to the

maximum/minimum flow segmentation problem by constructing the network, minim-

izing the energy function and the network flow theory [3, 13]. The graph cut theory

calculation framework is shown in Fig. 1.

Then, the segmentation of lesions is studied based on the above graph cutting theory.

The specific segmentation process is as follows.

First, a network map G(v, e) is established based on the filtering results of the multi-

resolution ultrasound image in Section 3.1, where v represents all nodes in the network

map and e represents a collection of edges connecting all neighbor nodes. Next, network

Fig. 1 Computational framework of graph cut theory
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termination nodes s and t are added, where s represents the source point and t represents

the sink point. The capacity of the network edge is defined as the information of the

grayscale and space between the multi-resolution ultrasound image regions. The informa-

tion of the gray level and space between the regions are obtained by averaging all the node

pixels between the ultrasound image regions [5, 16].

Secondly, the multi-resolution ultrasound image is segmented by solving the

minimum cut in the network map. A cut is a division of fixed points in the net-

work, which is defined by dividing all nodes of the network graph into disjoint sets

S and T′. The disjoint sets S and T′ are created by deleting the edges between

them, where all the source points s∈S and all the sink points t∈T′. The capacity of

a cut is the sum of the capacity of all the edges proposed by dividing the network

map into two sets with not intersect. The minimum cut is given in Eq. 9

mincut S;T
0

� �
¼

X
μ∈S;v∈T 0

ω μ; vð Þ ð9Þ

where cut(S, T′) represents the capacity of the cut and ω(μ, v) represents the

capacity of the edges between nodes μ and v. Since the multi-resolution ultra-

sound image is divided into a plurality of regions after by its growth, the capacity

of the edge in the network map G contains the grayscale and spatial information

of the ultrasound image region. The capacity of the edge is calculated by follow-

ing Eq. 10

ω μ; vð Þ ¼ exp
− I μð Þ − I vð Þj j2

α

 !
∙ exp

− D μ; vð Þj j2
β

 !
ð10Þ

where I(μ) and I(v) represent the average values of the grayscales of the multi-

resolution ultrasound image region μ and the region v, respectively. D(μ, v) represents

the distance between the ultrasound image area μ and v, α, and β are adjustment pa-

rameters. The minimum cut is defined as Eq. 11 by input Eq.10 into Eq.9.

mincut S;T
0

� �
¼

X
μ∈S;v∈T 0

exp
− I μð Þ − I vð Þj j2

α

 !
∙ exp

− D μ; vð Þj j2
β

 !
ð11Þ

According to the theorem of maximum stream/minimum cut, the value of the max-

imum stream is equal to the capacity of the minimum cut in any network. The mini-

mum cut can be solved, and the multi-resolution ultrasound image is segmented based

on Eq. 11 [20, 24].

3.3 Pathological localization based on B-SIFT

SIFT is a local feature detection method widely used in many fields of computer vision.

The utility model has the advantages that the scale and the rotation invariance has

good resistance to noise and image brightness conversion, and the amount of local fea-

ture information is rich. In this way, the B-SIFT feature detection method is introduced

to locate lesion region based on the above-described ultrasound image processing. B-

SIFT is a feature detection method based on SIFT optimization and its reliability is bet-

ter than SIFT.

The extraction of SIFT feature vectors follows the steps below.
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(1) A 16 × 16 pixel frame is created around each feature point in the initial shape

vector x0′, and a gradient of each of the pixels is calculated; (2) The obtained gradient

histograms of 8 directions per 4 × 4 pixels, thereby obtaining the accumulated value of

each gradient direction.

In this way, a 4 × 4 × 8 = 128 dimensional SIFT feature vector (also called a descriptor)

can be obtained. Based on this, the problem of poor recognition and location of lesions in

current research results can be further improved [19, 25].

In addition, the obtained SIFT feature descriptors needed to be normalized to further

reduce the influence of the difference in the gradient histogram [1, 14]. That is, for one

SIFT feature hs∈R
128 × 1, we have khsk22 ¼ 1. In this paper, the B-SIFT feature based on

the Babbitt coefficient is used as the lesion feature region, and its construction is as

follows.

First, the Bhattacharyya coefficient is defined as Eq. 12 for the two lesion feature vectors

x′ and y′

CoeB x
0
; y

0
� �

¼ α
X
i¼1

ffiffiffiffiffiffiffi
x0
iy

0
i

q
ð12Þ

where
X
i¼1

x0i ¼ 1 (xi′ ≥ 0) and
X
i¼1

y0i ¼ 1 (yi′ ≥ 0). Therefore, CoeBðx0
; x

0 Þ ¼
X
i¼1

x0i

¼ 1 . The formula for solving the Euclidean distance between
ffiffiffiffi
x0
i

p
and

ffiffiffiffi
y0i

p
are

expressed as Eq. 13 to analyze the algebraic relationship between the Bhattacharyya

coefficient and the Euclidean distance.

Dist
ffiffiffiffi
x0
i

q
;
ffiffiffiffi
y0
i

q� �
¼

ffiffiffiffi
x0
i

q
−

ffiffiffiffi
y0
i

q				 				 ¼ 2 − 2CoeB x
0
; y

0
� �

ð13Þ

The solution to the original Euclidean distance optimization problem can be

transformed into a solution to the Babbitt coefficient from Eq. 13. As long as

the eigenvector normalized based on the Babbitt coefficient is constructed ac-

cording to Eq.12, the final B-SIFT-based feature region descriptor hB is obtained

by Eq. 14.

hB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
φ ið Þ
kX

i¼1

hi

vuuut where hi∈φ
ið Þ
k ð14Þ

where φðiÞ
k represents the SIFT feature descriptor.

The mapping relationship between the B-SIFT feature and the SIFT feature is

obtained according to Eq.14. In this processing, the influence weight of the larger

value on the feature vector similarity is reduced, and the sensitivity of the smaller

value to the feature vector similarity is enhanced, which improves the positioning

strength of the proposed method. Finally, φðiÞ
k is replaced by hB as a new feature

point descriptor, which is the result of localization of lesions in gynecological ultra-

sound images.
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4 Results and discussion
In order to verify the effectiveness and feasibility of the improved method for lo-

cating lesions in gynecological ultrasound images, the following experiments are

presented.

The experimental platform is Matlab 10.0b, and the image library used in the

experiment contains 150 breast ultrasound images, including 90 benign and 60

vicious images. The ultrasound images used in the experiment were obtained

from the gynecological ultrasound image library of the Second Affiliated Hos-

pital of one provincial medical university. These images are acquired in real-

time during the clinical diagnosis by using the VIVID ultrasound imaging sys-

tem. The experimental probes are all 5.6–14 MHz with 38 mm linear probes.

The experimental parameter settings are shown in Table 1.

The experiment compares the performance of the proposed method with some trad-

itional methods. The experimental indicators are false positive rate and false negative

rate. Figure 2 is an example of experimental data.

Figure 3 is obtained based on the above experimental environment and data.

Figure 3 shows that the false positive rates of the literature results are high. Com-

pared with the results of traditional methods, the false positive rate of the pro-

posed method shows a lower state, which means that the method had higher

positioning accuracy. The method uses the Rayleigh mean filtering to adaptively

denoise the ultrasound image before the lesion region is located, which improves

the positioning accuracy to some extent. By using B-SIFT to carry out lesion

localization, B-SIFT is mainly proposed according to SIFT, which has scale and ro-

tation invariance, which has good resistance to noise and image brightness conver-

sion. Therefore, the proposed method improves the positioning accuracy.

Figure 4 shows that the false negative rate of positioning gradually relates to the

number of image frames in Pillay’s method, the maximum false negative rate

reaches 3%, and the average false negative rate is about 2.4%. Positioning false

negative rate changes steadily with the increment of the number of image frames

in Arnaud’s method, the average false negative rate is about 1.5%, and the max-

imum false negative rate is 3%. The proposed method maintains stable change with

the increment of the number of image frames with the maximum false negative

rate 0.8%, and the average false negative rate 0.35%.

From the comparison, we find that the false negative rate of the proposed

method is lower than traditional methods, which means that the proposed method

is more comprehensive. Since the proposed method performs lesion localization

based on B-SIFT, the SIFT feature vector is extracted by building a 16 × 16 pixel

Table 1 Software and hardware parameter settings

System Parameter Value

Hardware Hard disk 100G

RAM 8G

CPU Intel Core i3

Software Operating system Windows 7

Operating system add-on IIS service V6.1

Database MS SQL Server
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frame around each feature point in the initial shape vector. Therefore, the gradient

of each pixel with every 8 directions in a 4 × 4 pixel is calculated. Then the accu-

mulated value of each gradient direction is obtained. This highly enhances the po-

sitioning of the method and reduces the false negative rate.

The comparison between the proposed method and the traditional results is analyzed

to further verify the effectiveness of the proposed method. Here, the energy consump-

tion and positioning time of the lesion area are selected as indicators. The results are

shown in Fig. 5 and Table 2.

Figure 5 shows that the energy consumption of gynecological ultrasound image

lesion localization based on B-SIFT is low to 30 J. In addition, the method has bet-

ter positioning stability with small fluctuation by time and the amount of experi-

mental data. The energy consumption of the lesions in the two traditional methods

are all at a high level, and the average energy consumption was about 50 J, which

is significantly higher than the proposed method. Therefore, it verifies that the B-

SIFT based gynecological ultrasound image lesion localization method has better

performance.

The time-consuming comparison of gynecological ultrasound image lesion

localization is shown in Table 2.

Fig. 2 Experimental data example. a Example 1. b Example 2
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Table 2 shows that the positioning time of all three methods increases con-

tinuously with the increment of the amount of experimental data. However, the

overall time-consuming value of the proposed method is the smallest (no more

than 6 min). The positioning results of the other two methods can take up to

19 min and 26 min, respectively. It verifies that the proposed method can

quickly complete the localization of lesions in gynecological ultrasound images,

which greatly saved the positioning time. It is because that the proposed

method obtains the feature region descriptor based on B-SIFT by constructing

the eigenvector normalized based on the Babbitt coefficient, which is used to

Fig. 3 Comparison of false positive rates in different methods. a False positive rate of [17]. b False positive
rate of Wininger et al. [23]. c False positive rate of lesion localization in gynecological ultrasound images
based on B-SIFT (proposed)
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realize the image lesion region localization. This step is a greatly simplified

traditional method and saves the positioning and time-consuming.

5 Conclusion
Medical diagnosis using ultrasound images is an important method in clinical

diagnosis. Non-destructive, real-time, non-invasive, and other advantages have

made it widely used in gynecological diagnosis. In recent years, early diagnosis

Fig. 4 Comparison of false negative rates in different methods. a False negative rate of [15]. b False
negative rate of Arnaud et al. [2]. c False negative rate of lesion localization in gynecological ultrasound
images based on B-SIFT (proposed)
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of gynecology based on ultrasound images is a research hotspot. Since the ultra-

sound image is limited by the low signal to noise ratio at the time of imaging,

this increases the difficulty of accurate diagnosis. In view of the current prob-

lems in the recognition and location of gynecological lesions, a localization

method based on B-SIFT for gynecological ultrasound image lesions is

Fig. 5 Comparison of energy consumption in different methods. a Positioning energy consumption of [15].
b Positioning energy consumption of Arnaud et al. [2]. c Lesion localization energy consumption of
gynecological ultrasound images based on B-SIFT (proposed)
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proposed. The image is enhanced by the Rayleigh mean, and the lesion region

is localized by B-SIFT based on the enhanced image. The experimental results

show that the proposed method is robust and can be used in real application.

Today, there are great differences in the problems that need to be solved in early

diagnosis of gynecology from the perspective of gynecological ultrasound image

analysis and processing. In addition, different image analyses and processing tech-

nologies have different pertinences and problems to be solved. Therefore, how we

can effectively represent the causal link in the doctor’s cognitive process on this

basis will be a very important and urgent problem to be solved.
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