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Abstract

A novel approach for positioning using smartphones and image processing techniques is developed. Using structure
from motion, 3D reconstructions of given tracks are created and stored as sparse point clouds. Query images are
matched later to these 3D models. High computational costs of image matching and limited storage require
compressing point clouds without loss of positioning performance. In this work, localization is improved and memory
and storage requirements are minimized. We assumed that the computational speed and, at the same time, storage
requirements benefit from reducing the number of points with appropriate outlier detection. In particular, our
hypothesis was that positioning accuracy is maintained while reducing outliers in a reconstructed model. To evaluate
the hypothesis, three methods were compared: (i) density-based (Sotoodeh, International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVI-5, 2006), (ii) connectivity-based (Wang et
al. Comput Graph Forum 32(5):207–10, 2013), and (iii) our distance-based approach. In tenfold cross-validation,
applied to a pre-reconstructed reference 3D model, localization accuracy was measured. In each new model, the
positions of test images were identified and compared to the according positions in the reference model. We
observed that outlier removal has a positive impact on matching run-time and storage requirements, while there are
no significant differences in the localization error within the methods. That confirmed our initial hypothesis and allows
mobile application of image-based positioning.
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1 Introduction
Due to the rapid growth of technologies, pedestrian nav-
igation has become widely accessible in the recent years.
In the developed countries, smartphones are no longer
considered as luxury items and are owned by the major-
ity of population. The sensors installed in modern mobile
devices, such as global positioning system (GPS) receiver,
accelerometer, compass, gyroscope, and camera, provide
a broad field of methods that can be applied for mobile
navigation.
Satellite-based GPS is widely used in various naviga-

tional devices and applications. Being available on most
modern smartphones, with a help of additional context
information (e.g., map-based graphical representation of a
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city area), GPS can provide assistance in navigation. How-
ever, in large cities, where tall buildings block or reflect
satellite signals, the positioning error of GPS is measured
in meters [1]. Such an error does not allow using GPS
to navigate blind or visually impaired people, since step-
ping off the sidewalk to the car lanes is dangerous and
can be harmful. Even using differential correction1, GPS
alone is not sufficiently accurate to guide pedestrians in
urban environments, because there are no distinct roads
but narrow to broad paths to walk on.
Some other approaches use the number of steps

detected by an accelerometer, reference points, and a
mobile compass for navigation assistance. Fallah et al. [2]
presented a successful example of this method. However,
their system is designed for indoor environments, where
maps are very accurate and clear landmarks (e.g., corners
and doors) are available.
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More recently, radio frequency identification (RFID)
technology has found its use in the research area of navi-
gation. One of the latest systems applied to navigation of
visually impaired was proposed by Varpe and Wankhade
[3]. On the user side, they have applied a mobile RFID
reader, a transceiver for transmitting the tag’s informa-
tion, and an audio device to provide feedback to the user.
To identify walking routes, RFID passive tag network has
been employed on the path. Although the accuracy of such
systems yields a precision of 1-m scale when a dense RFID
tag configuration is used, it requires additional objects
(i.e., RFID tags), which makes this technology costly and
not easily adoptable for new environments [4].
An alternative method of user navigation with the help

of smartphones is currently being developed [5]. This
method makes use of image processing for navigation.
This technique has been utilized mostly in robotics [6],
but there are some other adaptations of it for indoor and
outdoor pedestrian navigation as well [7–10]. Firstly, given
tracks are reconstructed as sparse 3D point clouds using
structure frommotion (SfM) [11] and stored in a database.
Secondly, with an interactive app running on a smart-
phone, query images are acquired in order to retrieve the
location and direction of the camera (i.e., the pedestrian),
which is a required component for navigation.
Scale invariant feature transform (SIFT) [12] features

are extracted from the images taken with the client
application. The features are reconstructed in the form
of points in the 3D cloud. Comparing thousands of
points from the model with the current query photo-
graph is computationally expensive. Together with stor-
age limitation, this causes the necessity of removing
outliers from 3D data without affecting the positioning
accuracy.
In this paper, we analyze outlier removal in generated

3D point clouds for pedestrian navigation. Our hypothesis
states that it is possible to maintain positioning accu-
racy while reducing the number of outliers in a recon-
structed 3D model. These developments are part of the
smartphone-based system designed for navigation of visu-
ally impaired people [5].

2 State of the art
According to the definition of Grubbs [13], an outlying
observation, or outlier, is “one that appears to deviate
markedly from other members of the sample in which it
occurs.” Outliers in a 3D point cloud may be of differ-
ent nature. Firstly, they may result from errors occurring
during the reconstruction process, such as inherent inac-
curacies in feature detection, false matching, and errors in
estimation of fundamental and projection matrices. Sec-
ond, non-static environment objects (e.g., cars, chairs and
tables of street cafes, advertising and market stalls) add
noise to the reconstruction.

In SfM 3D point clouds, outlier removal is possible in
two stages. First, within the bundle adjustment, erroneous
matches are usually discarded by the random sample
consensus (RANSAC) [14] or its extensions, progres-
sive sample consensus (PROSAC) [15], and preemptive
RANSAC [16]. In order to do a robust estimation of
parameters in terms of reconstruction, the following steps
are repeated iteratively: (i) a seed group of matches is ran-
domly selected; (ii) transformation from the seed group
is computed; (iii) inliers to this transformation are found;
(iv) if the number of inliers is sufficiently large, the least-
squares estimate of the transformation on all of the inliers
is recomputed. The transformation with the largest num-
ber of inliers is kept. With a sufficient number of inliers
(more than 50%) and correctly chosen parameters, this
method gives a good estimation of matches.
Nonetheless, the overall outcome model sometimes is

not “clean” due to the inherent inaccuracies in feature
detection, false matching, and errors in estimation of fun-
damental and projectionmatrices. This leads to the neces-
sity of performing an additional step of outlier detection
in the reconstructed 3D point cloud. In most vision-based
city reconstruction approaches, outliers are removed only
within the reconstruction process, and no “cleaning” tech-
niques are applied to the generated point clouds [17–20].
That is explained by the visualization purpose of their
reconstruction.
Taglioretti et al. [21] evaluated the performance of

localization depending on the selected outlier removal
method during the bundle adjustment. The forward
search method [22] proved to be superior. However, the
problem of additional outlier removal in SfM 3D point
clouds has not been evaluated from the perspective of
localization task before. In order to identify possible appli-
cable techniques, we observed existing outlier detection
approaches.
Based on Hodge and Austin [23], outlier detection

approaches are categorized as

• distribution-based,
• depth-based,
• clustering-based,
• distance-based,
• density-based, and
• connectivity-based.

In distribution-based methods, the bulk of observa-
tions is estimated robustly by a suitable model distribu-
tion. Outliers are then defined as observations, which are
unlikely to be generated by the distribution [24].
In depth-based approaches, data objects are organized

in layers in the data space, with the expectation that shal-
low layers are more likely to contain outlying data objects
than the deep layers [25].
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In clustering-based techniques, a cluster of small size
can be considered as clustered outliers [26].
In the approach by Knorr and Ng [27], an object in a

dataset is a distance-based outlier if at least a given frac-
tion of the other objects in the dataset lies at a distance
greater than some given threshold. This approach does
not make any assumptions about the data distribution
and has better computational efficiency than depth-based
methods, especially in large datasets.
In density-basedmethods, the relative density of a point

compared to its neighbors is computed as outlier score.
Using this approach, one can effectively identify local out-
liers in datasets with diverse clusters [28]. Breunig et al.
[29] proposed a density-based approach relying on the
local outlier factor (LOF) of each object, which is depend-
ing on the local density of its neighborhood. The neigh-
borhood is defined by the distance to the M(p)th nearest
neighbor. The valueM(p) is predefined. It corresponds to
the minimum number of points used in the calculation of
density.
Approaches from classification [23] sometimes can be

combined into more complex methods. Thus, a mixture
of density- and clustering-based approaches, in this paper,
is referred to as connectivity-based approach.
Outlier removal outside the bundle adjustment in com-

pletely built SfM point clouds has not been addressed
explicitly before. However, there are some approaches
designed for laser-scanned point clouds. Such clouds are
usually more accurate and consist of a higher number
of points. We believe, nevertheless, that the principles of
outlier removal in laser-scanned point clouds also work
for SfM point clouds and, therefore, review here some
approaches designed for laser-scanned point clouds.
In 2006, Sotoodeh [30] presented a LOF-based algo-

rithm for outlier detection in laser-scanned point clouds.
The author justifies the selection of a density-based algo-
rithm due to its unconstrained behavior to the preliminary
knowledge of the scanned scene and its independence
from the varying density of the points. The method was
able to detect most of the expected outliers in the scene;
however, it was not robust against clusters of outliers. For
that reason, in 2007, the author proposed a modified ver-
sion of his algorithm based on hierarchical clustering [31].
The modified algorithm runs in two phases: in the first
stage, it removes relatively large-scale erroneous measure-
ments based on Euclidean minimum spanning tree edges.
In the second phase, it detects and removes the outliers
that might not be as obvious as the first ones but accord-
ing to the scanned object surfaces, they are considered
as wrong measurements. The algorithm was tested on
terrestrial point clouds and returned a satisfying result:
both, single and clustered outliers were removed. How-
ever, in some cases, user interaction was still required to
determine whether a cluster is an outlier or an object. An

additional drawback is a run-time complexity of O(n3),
which makes the method inefficient for working with
datasets containing thousands of points.
Luo and Liao [32] proposed outlier detection in

laser point clouds extending distance- and density-based
approaches. Their algorithm changes 3D data to 2D by
slicing and projection and employs a KD tree to index the
projected points. The authors use the local distance-based
outlier factor (LDBOF) defined by Zhang et al. [33] as the
outlier judgment criterion. LDBOF uses the relative loca-
tion of an object to its neighbors to determine the degree
to which the object deviates from its neighborhood. The
authors claimed higher efficiency compared to the algo-
rithms of Sotoodeh [30, 31]. However, they also mention
the necessity of finding more robust parameters [32].
Recently, Wang et al. [34] designed a connectivity-

based pipeline for outlier filtering and noise smoothing
in low-quality point clouds from outdoor scenes. They
first detect sparse outliers applying a scheme based on the
relative density deviation of the local neighborhood and
the average local neighborhood, providing a scoring strat-
egy that includes a normalization to become independent
from the specific data distribution. In order to remove
further small dense outliers, a clustering method is used.
According to the authors, detection is capable of removing
all types of outliers without any user interactions.

3 Outlier removal applied to 3D point clouds
City-scale 3D point clouds are large, arbitrary datasets,
and, therefore, the methods claiming computational effi-
ciency were preferred over others. Another important cri-
terion for selection of an outlier removal method was the
ability of amethod to be performedwithout any additional
user interaction. Thus, the first approach of Sotoodeh [30]
and the pipeline ofWang et al. [34] were implemented and
applied to our datasets with some parameter adjustments.
While the density-based method runs in a linear time,

the second part of the connectivity-based approach, per-
formed by agglomerative hierarchical clustering, has the
run-time complexity of O(n3). To assess the potential
of computational speedup, an original distance-based
method of outlier detection in 3D point clouds is pro-
posed.

3.1 The novel distance-based approach
We adopt the notion of distance-based outliers proposed
by Knorr and Ng [27] for data-mining applications: “An
object in a dataset is an outlier if at least a fraction of
the objects in this dataset lies in a larger distance from
this object.” Our approach is based on the assumption that
points belonging to building wall structures have normal
distribution. Thus, we apply a double-threshold scheme:
firstly, we reduce the impact of infrequent points in the
model, the relative distances from which to the other
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points in the model are comparatively large. After elimi-
nating such points, we estimate the second filtering factor
based on the global mean over mean distances of each
point’s neighborhood.
Given a point set P = {p1, . . . , pn} (n is the number of

points), outlier elimination is performed as follows:

1. At the beginning, for each point pi, (i = 1, . . . , n), the
k-nearest neighbors N(pi) = {q1, . . . , qk} ⊆ P are
determined. The value of k = 32 was selected for our
approach by visual inspection as described in the
following subsection.
The function returns the set of indexes of a point’s
k -nearest neighbors and their distances to the point.

2. For each point pi, the so called k-distance, denoted
as Dk(pi), is defined as the distance d(pi, pj), where
pj ∈ N(pi) is the neighbor farthest away in pi’s
k -neighborhood—in other words, the longest
distance among the distances from pi to its k -nearest
neighbors.

3. Then, for each point pi, the average distance of its
neighborhood d(pi) is calculated as

d(pi) =

∑

qj∈N(pi)
d(pi, qj)

k
(1)

Then, the standard deviation of the neighborhood
distances is estimated as

σ =

√
√
√
√
√

n∑

i=1
(d(pi) − D)2

n
(2)

where D is the mean value of all d(pi).
4. Subsequently, the point cloud is filtered so that all

points that meet the condition d(pi) ≥ 10σ are
eliminated. Having the point cloud filtered initially,
the average distance D is recalculated with respect to
the points left in the model. Then, the refined value
D together with Dk(pi) is used for the final filtering
phase: the points, for which the condition
Dk(pi) ≥ 3D holds, are removed from the model.
The remaining points are considered inliers.

All parameters were empirically derived, considering a
set of constraints described further.

3.2 Constraints for parameters used in the proposed
method

The first qualitative characteristic of outlier removal is
a level of noise preserved in the model afterwards. The
noise level stands for the relative number of points
or point clusters remaining in the model after outlier

detection, although they should have been removed. This
characteristic is particularly important for aligning mod-
els and maps, which is a part of our image-based navi-
gation system merging separate model fragments in the
same coordinate space. A high level of noise can affect
the alignment, as the outlying points can drag a model
towards the wrong walls.
Removing as many outliers as possible, the main con-

straint for parameters adjustment (e.g., number of near-
est neighbors, filtering coefficients) was retainability of
model’s structure, or, in other words, presence of all sig-
nificant walls in the model after outlier removal.
This constraint is important for navigation, because we

are interested in covering large area. At the same time,
the correctness of the model’s alignment, again, highly
depends on the footprint structure, so that, in some
cases, even an additional small wall can resolve ambi-
guity of scaling parameters and thus the right model
placement. Therefore, it is rather important to have the
majority of walls preserved after the outlier removal
step.
For each outlier removal method, we achieved a trade-

off between the level of noise and model’s retainability by
adjusting the parameters. The parameter adjustment was
performed on point clouds of different density through
iterative testing using different combinations of parame-
ters: in each test case, we compared the number of point
clusters outside the facade (due to the small model size,
it was possible to count them manually) and evaluated
the completeness of facades. For our models, the local
optimum was achieved with the described set of param-
eters. However, it may happen that further parameter
adjustment might be required for the models of different
density.

4 Experimental setup
4.1 Dataset
Evaluation was performed on a dataset recorded at the
downtown of Maastricht, the Netherlands. The dataset
results from 7 walks with a recording device (iPhone 5
(Apple Inc., USA) with acquisition application running on
it) attached with a chest mount utility to the body of the
person acquiring images (Fig. 1). Within a walk, images
were acquired sequentially every second. A total of 3291
images were recorded. All recordings differ in date, time,
and weather condition.
The route passes by several landmarks in the center

of Maastricht. The main characteristics of the location
are a large number of pedestrians, high vehicle traffic,
and narrow streets and houses located close to the road.
Additionally, the route’s appearance changes most during
spring and summer, as street cafes are active and numer-
ous shops and stores are constantly changing decorations
in and around showroom windows.



Sirazitdinova et al. EURASIP Journal on Image and Video Processing  (2016) 2016:43 Page 5 of 10

Fig. 1 Data acquisition and navigation. A smartphone is attached
with a chest-mount to the user (on the left). For positioning, the user
holds an interactive cane, connected to the system via Bluetooth
interface and providing navigational clues in a form of a haptic
feedback. Data is transferred to a computer using wireless network
connection. Consent to use the photograph was obtained

Processing with VisualSFM [11] resulted in a dataset of
17 models. Each model represents a reconstructed set of
building walls as a sparse 3D point cloud. The models
contain from 200 to 12,792 points.

4.2 Preparation of test models
Inspired by the approaches of Strecha et al. [35] and
Untzelmann et al. [36], we aligned all models to the Open-
StreetMap [37]. To evaluate our initial hypothesis that
positioning accuracy is maintained while reducing out-
liers in a reconstructed model, we selected from our
dataset a reference model that allows the best automatic
alignment to the real world coordinates (Fig. 2).
The selected model contains 11,650 points and 374

cameras. This model was then reconstructed again by
tenfold cross-validation: all images used in the reference
model were randomly partitioned into 10 sub-samples of
equal size. For each new reconstruction, a newly selected
single sub-sample containing 10% of original images was
used as test data; the remaining 90% of images were used
to reconstruct a model.

Fig. 2 Alignment of a model to the OpenStreetMap outline. Green
points belong to wall structures; red line is a camera path

4.3 Testing process
To test the hypothesis, the following sequence of steps
was applied to eight test reconstructions consisting of the
largest amount of points:

1. Align each model to the map to estimate their scaling
factors relatively to the real-world coordinate system.

2. Align the test reconstruction to the reference
reconstruction. For that, we apply the estimated
scaling parameters to the test and the reference
models.

3. Estimate the translation between the models by
calculating the difference between the models’
centroids.

4. Refine translation and rotation by applying the
iterative closest point (ICP) algorithm [38].

5. Estimate a position of each image not used for the
reconstruction and record the matching time. To
estimate the location of an image, SIFT features are
extracted from it. Correspondences between the
features and points in a 3D point cloud are
determined. Since some of the found
correspondences are matching outliers, the pose
estimation procedure is wrapped in a RANSAC loop.
RANSAC picks a random subset of matches and uses
them to generate a hypothesis about the pose. It then
tests the hypothesis against the full set. If the number
of matches is large enough, RANSAC terminates
returning the set of inliers and a pose estimated from
them.

6. Use the corresponding positions of the reconstructed
images from the reference model to estimate the
localization error of each image. The error is
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calculated as the distance between the estimated
position and the reference position in 2D (as we
localize the user in 2D, the z-component is omitted).

7. Apply the three outlier removal methods to the
aligned test reconstruction. Repeat 5 and 6 with the
resulting models.

To measure the matching time, we conducted the local-
ization experiment 10 times on each of the test cases. All
tests were computed on a single core of a PC equipped
with the Intel Core i7 CPU running at 2.00 GHz.

4.4 Performance measures
Firstly, we observe the performance of outlier removal
methods themselves according to the percent of points
removed Pr by each method and in terms of time To
required for a method to remove outliers.
Secondly, we evaluate the performance of localization

process. For that, we distinguish between efficiency and
quality indicators. Our goal is to achieve a trade-off
between those two groups.
Efficiency indicators refer to performance in terms of

processing time and memory requirements and estimate
matching time Tm (in seconds) and model’s size Sm (in
KB) accordingly. In order to show the changes in per-
formance caused by the application of a certain outlier
removal method, we introduce the parameters for changes
in matching time �Tm0j and space requirements �Sm0j,
defined as

�Tm0j = Tm0 − Tmj

Tm0
× 100% (3)

�Sm0j = Sm0 − Smj

Sm0
× 100% (4)

where j = 1, . . . , 4 corresponds to a model in a test case.
A test case contains four models: one model before outlier
removal and three after different outlier removal methods
applied.
Quality indicators describe localization performance

associated with a certain model.
Let n be a total number of test images associated with

a certain tested model. Given a test image contained in
the reference model, an image is considered as matched
if it is possible to reconstruct its position p in the tested
model. Accordingly, nm is the total number of matched
images in the model. A match is considered as correct if
the positioning error, estimated as a distance between a
reconstructed position p and its corresponding position
p0 in the reference model, is less than a threshold τ

∥
∥p0 − p

∥
∥ < τ (5)

We set τ = 1.6 m (2–3 human steps).

The number of correct matches nc is estimated as

nc =
nm∑

i=1

[∥
∥p0i − pi

∥
∥ < τ

]
(6)

Then, the matching rate R is calculated as the ratio of
the number of correct matches nc and the total number of
images n

R = nc
n

× 100% (7)

Thematching error E is the average value of all position-
ing errors of the correct matches:

E =

nm∑

i=1

∥
∥p0i − pi

∥
∥

(∥
∥p0i − pi

∥
∥ < τ

)

nc
(8)

Based on these two indicators, we estimate weighted
matching error Ew, which is used as an ultimate indicator
for the quality of localization

Ew = wE (9)

where w is a weighting coefficient of a certain model.
For each jth model in a test case, where j = 1, . . . , 4, the

coefficient wj is calculated as follows

wj = 1 − Rj − min{R1, . . . ,R4}
100%

(10)

In fact, the ICP alignment of a test model to the ref-
erence model might contain an error up to 1 m. Thus,
the absolute values of localization measurements might
not be precise. However, as we use always the same align-
ment, the positioning errors are estimated in the same
coordinate system within a test case; hence, the correct
estimate of relative errors is possible. As we are interested
in comparing the quality of localization, our final quality
indicator is

�Ew0j = Ew0 − Ewj (11)

where Ew0 is the weighted localization error associated
with the reference model, and Ewj (j = 1, . . . , 3) are the
corresponding weighted errors in localization using the
models after the outlier removal methods applied.
We run one-way analysis of variance (ANOVA) on the

entire sample of positioning errors to see whether the
changes in positioning performance are significant or not,
depending on the outlier method applied.

5 Results
5.1 Outlier removal
According to visual inspection, each of the approaches is
able to reduce noise while preserving the model struc-
ture (Fig. 3). Comparing to the original models containing
sparse outliers, the outcomes of all outlier removal meth-
ods look clean. Some wall fragments containing relatively
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Fig. 3 Comparison of outlier removal effect on 3D model. a Original 3D model footprint and 3D footprints after b density-based, c
connectivity-based, and d distance-based outlier removal methods applied. For a better visibility, the models are rotated upright according to the
pre-computed model’s gravity vector

fewer feature points than other parts might be missing;
however, the basic structures are always preserved.
On average, the density-based method classified the

biggest number of points (33.3% of the initial number)
as outliers, while the smallest result was obtained by the
distance-based method (10.2%) (Table 1).
Regarding the outlier removal time, on average, our

distance-based approach (Fig. 4, blue) outperforms the
density-based approach (Fig. 4, red) to around 45% for all
models regardless of the number of points they contain.
The computational time of connectivity-based approach
(Fig. 4, green) grows in a polynomial way with increase of
model’s size. Hence, for amodel consisting of about 10,000
points, outlier removal will take approximately 7 s.

5.2 Computation and storage requirements
The experiment has shown that in all cases, the reduc-
tion of outliers leads to the noticeable improvement in
matching time Tm (Fig. 5, top-left panel) and has a pos-
itive impact on model’s size Sm (Fig. 5, top-right panel),

comparing to the performance associated with a model
before outlier removal.
The benefits in matching time �Tm0j and storage

requirements �Sm0j are proportional to the number of
points Pr removed from the model (Table 1).

5.3 Quality of localization
For the extreme case (the density-based approach, remov-
ing 33.3% of points from the model), the probability to
locate an image with a precision up to 1.6 m was 70%.
Using this threshold, the absolute error values were below
0.56 m for all of the cases (Fig. 5, bottom-left panel).
The average localization error resulted as the lowest

(0.51 m) for our outlier removal method (Fig. 5, blue
bar on the bottom-left panel). At the same time, tak-
ing into account the matching rate, the relative weighted
localization error tended to increase for the methods clas-
sifying a greater number of points as outliers compared
to the reference model (Table 1). The ANOVA test with 3
degrees of freedom applied on the entire set of positioning

Table 1 Evaluation results. �Tm0j , �Sm0j , and �Ew0j are calculated with the Eqs. 3, 4, and 11, respectively

Outliers Benefit in Benefit in Loss in the
removed computational time storage requirements accuracy of localization
Pr (%) �Tm0j (%) �Sm0j (%) �Ew0j (cm)

Density-based 33.3 31.1 28.97 8

Connectivity-based 20.4 17.6 19.24 4

Distance-based 10.2 8.8 10.1 1

Before outlier removal 0 0 0 0
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Fig. 4 Runtime performance To of outlier removal methods. Outlier
removal was applied to 15 models with different sizes

errors resulting in the F value of 0.32 and P value of
0.8 has shown that there is no evidence in difference in
the mean values of positioning errors depending on the
outlier removal method.

6 Discussion
The problem of outlier removal in photogrammetric point
clouds in the context of image-guided localization has not

been studied exhaustively before. This study encourages
using outlier removal in the applications, where matching
time and storage requirements are important constraints
for usage. Within our study, two approaches initially
designed for point clouds generated with a laser scan-
ner have been implemented and shown applicable for
photogrammetric point clouds, too. Hence, we assume
that our distance-based approach designed and tested
with photogrammetric point clouds is also applicable for
laser-scanned point clouds.
The average error of our localization is 0.56 m (Fig. 5,

red bar on the bottom-left panel) including the loss in
quality of 8 cm (Table 1) after outlier removal. Further-
more, this value additionally accumulates an error gained
in the process of alignment to the reference model, which
we are unable to extract from the final result. Comparing
our results with the usual performance of GPS, when the
positioning error can be up to several meters, we consider
the loss in quality of 8 cm as reliable and acceptable. The
ANOVA test confirms those losses as insignificant.
Together with the fact that the conducted experiment

has shown obvious benefits of outlier removal in terms
of matching time and space requirements, it makes us
believe that our initial hypothesis holds.

Fig. 5 Evaluation results associated with the models. (i) Original model before outlier removal and the models after (ii) density-based, (iii)
connectivity-based, and (iv) distance-based methods applied. Average matching time is the average of Tmj returned by each jth test case; average
file size—the average of all Smj . Average error of localization is the average of all Ej defined by Eq. (8), and average weighted error is the average of all
Ewj defined by Eq. (9)
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Outlier removal can be applied to numerous tasks of
image-based navigation, such as navigation of blind, navi-
gation in the environments where GPS is unavailable (e.g.,
indoor) or unreliable (e.g., narrow streets with tall build-
ings), and recognition of landmarks and virtual tours.
Not only user-oriented positioning tasks may benefit from
outlier removal but also, for example, it may find its
use in video-based tracking tasks in medical applica-
tions (e.g., colonoscopy, bronchoscopy, panendoscopy).
Furthermore, outlier removal is good for applications
requiring scene visualization.
In this work, we have evaluated three methods. How-

ever, it is not that easy to select the one suitable
method for universal use. The superior method certainly
is application-dependent. Thus, if a navigational system
is equipped with supporting sensors (e.g., accelerometer,
gyroscope) and algorithms (e.g., landmarks-based posi-
tioning correction) allowing for the adjustment of posi-
tioning results, then the fastest method shall be chosen
(the density-based method). Otherwise, depending on the
required precision, a robuster method would be prefer-
able (our distance-basedmethod). The connectivity-based
approach returns also good results; however, due to its
cubical algorithmic complexity, the approach is not suit-
able for the applications requiring iterative outlier removal
in the point clouds containing hundreds of thousands of
points.
The distance-based method leads to benefits in com-

putational time and storage requirements of about 10%.
In defense of the feasibility of using this method, we can
say that using this 10% of time improvement, it is pos-
sible to match 10% more images, which will lead to a
robuster positioning. However, for a better justification,
a user study with a working prototype is required. It is
necessary to investigate user reaction on the system’s per-
formance in terms of the tolerance for waiting time and
positioning error. This will be addressed in the future
work.
Another future task is incorporation of outlier removal

into the bundle adjustment process. Iteratively applying
outlier removal after each new nth image (e.g., n = 100)
might decrease the number of erroneously reconstructed
models.
Furthermore, from the perspective of increasing the

efficiency of mobile image-based navigation, we believe
that a right choice of descriptors (e.g., SIFT, SURF [39],
ORB [40], BRISK [41]) may also reduce computational
time and models’ size. This is a subject of our additional
study.
Another method for reducing the number of required

matches, and thereby decreasing the time for localiza-
tion, is pruning the search space. This will be achieved
by reducing the points to an area within a certain range
around the most likely position (e.g., based on prior

position and trajectory). A careful evaluation will be
needed to investigate the trade-off between positioning
accuracy and matching time. An iterative approach with
a growing region around the estimated position is also
possible, as the most expensive calculation is the match-
ing process. One can also use the direction from which
a point is seen to further reduce the number of eligible
points.
Image-based navigation has all chances to become avail-

able on a consumer level with a help of modern mobile
devices. There are many ways of improving the tech-
nology and, with additional optimizations, the task of
image-guided navigation has a chance to be performed
in real time. Moreover, with the further hardware devel-
opment, all computational complexity can be shifted to
a mobile device, and the models can be stored in the
device’s memory, which will eliminate the bottleneck of
wireless communications between the device and the
server and will enable the technology usage when device
is offline.

7 Conclusions
Wemanaged to prove our hypothesis that outlier removal
in 3D point clouds is beneficial for image-guided mobile
navigation. Reduction of the number of points in themod-
els yields to computational speedup and also enables to
store more models on a single device, while the changes in
positioning accuracy remain unchanged.

Endnote
1 http://www.gdgps.net/
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