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Abstract

In this paper, rotation invariance and the influence of rotation interpolation methods on texture recognition using
several local binary patterns (LBP) variants are investigated.
We show that the choice of interpolation method when rotating textures greatly influences the recognition capability.
Lanczos 3 and B-spline interpolation are comparable to rotating the textures prior to image acquisition, whereas the
recognition capability is significantly and increasingly lower for the frequently used third order cubic, linear and nearest
neighbour interpolation. We also show that including generated rotations of the texture samples in the training data
improves the classification accuracies. For many of the descriptors, this strategy compensates for the shortcomings of
the poorer interpolation methods to such a degree that the choice of interpolation method only has a minor impact.
To enable an appropriate and fair comparison, a new texture dataset is introduced which contains hardware and
interpolated rotations of 25 texture classes. Two new LBP variants are also presented, combining the advantages of
local ternary patterns and Fourier features for rotation invariance.
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1 Introduction
In many computer vision and image analysis applications,
the texture of an object is an important property that can
be utilized for classification or segmentation procedures.
However, texture analysis in digital images is not a trivial
task and numerous texture descriptors have been pro-
posed. In some applications, e.g. face recognition as in [1],
the orientation of the object is known, while inmany other
applications the orientation of an object may be arbitrary
and hence also the texture. In the latter case, the texture
can be rotated to amain orientation or principal direction,
see e.g. [2] where the Radon transform is used to accom-
plish this, or alternatively, a texture descriptor invariant
to rotation can be used. A third way to achieve rotation
invariance is to add rotated versions of the textures to
the training data. This technique of adding a priori infor-
mation to achieve invariance towards something through
adding virtual training samples is explored in [3].
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Rotation invariant texture descriptors have been widely
studied, as reviewed in [4]. Texture descriptors invari-
ant to viewpoint (adding even more degrees of freedom)
have also been studied in for example [5]. However, the
problem of arbitrary viewpoints is not addressed in this
paper.
Rotation invariance for a texture descriptor can be

achieved locally (at each pixel position) or globally (for the
region/patch investigated). In [6], clusters of filter bank
responses, denoted textons, are computed and the his-
togram of occurring textons are used as features. They
propose a filter bank, denoted MR8, for which global
rotation invariance is achieved by using the maximum
response over six different orientations. A possible advan-
tage with globally rotation invariant descriptors is that
such a descriptor can retain the distribution of local ori-
entations while this information will be lost in a local
rotational invariant descriptor. Note however, that in the
case of MR8, this information is lost when only keeping
the maximum response over orientations. In [7], a glob-
ally rotation invariant descriptor retaining distributions
over orientations is introduced based on Fourier trans-
formed responses from Gabor filter banks. In [8], a local
rotation invariant descriptor is introduced based on the
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local binary pattern (LBP) descriptor and [9, 10] proposed
globally rotation invariant descriptors based on Fourier
transformed of the LBP.
The LBP descriptor has over the past decades resulted

in a whole family of texture descriptors. For this study
on rotation invariance, we have selected the classic LBP
descriptor together with seven extensions, including two
different approaches to rotation invariance. The descrip-
tors are the following: (i) the classic LBP descriptor [8], (ii)
LBPri—the approach to local rotation invariance [8], (iii)
LBPDFT—an approach to rotation invariance where glob-
ally rotation invariant Fourier features are extracted [10],
(iv) ILBP (improved LBP) which is a more noise robust
extension of the LBP [11], (v) ILBPri using the approach to
local rotation invariance, (vi) ILBPDFT using the approach
to global rotation invariance, (vii) LTPDFT (local ternary
patterns) where three rather than two states are con-
sidered in the local neighbourhood ([12]) and using the
approach to global rotation invariance, (viii) ILTPDFT

combining ILBP, LTP and the approach to global rotation
invariance. By studying these descriptors, we can get a
baseline performance from the classic LBP and see how
two well used extensions to the LBP perform. In addition,
we can see how invariant the two different approaches to
rotation invariance are.
In this paper, we investigate and compare the follow-

ing: local rotation invariance, global rotation invariance,
including rotations in the training data, and the effect
of the different interpolation methods when rotating tex-
tures, in the setting of retaining discriminant texture
information. In order to do this, we introduce a new tex-
ture dataset, the Kylberg Sintorn Rotation Dataset. The
dataset includes images of hardware-rotated textures as
well as texture images rotated by the interpolation ker-
nels: nearest neighbour, linear, third order cubic, cubic
B-spline and Lanczos 3. The dataset has 25 classes of dif-
ferent types of textured surfaces and is publicly available
[13]. The images in the dataset are acquired in raw format
avoiding compression artefacts.

2 The Kylberg Sintorn rotation dataset
There are, to our knowledge, two texture datasets avail-
able which contain images of rotated textures; the Outex
dataset [14] and the Mondial Marmi dataset [10].
The Mondial Marmi dataset contains images of slabs of

Italian marble. The textured surfaces are rotated prior to
image acquisition to allow for studying rotation invariance
in texture analysis. The imaging is done with a compact
camera storing the images in JPEG format with notable
compression artefacts.
The Outex dataset is a large dataset with 320 texture

classes imaged at different resolutions, orientations and
illuminations. Unfortunately, there are periodic stripe-like
artefacts in the images. In addition, for a given class,

orientation, resolution and scale, the image data to gener-
ate samples from is rather limited.
Due to, for our purposes, undesirable artefacts in these

rotation texture datasets (periodic stripes in Outex and
JPEG compression inMondial Marmi), a new dataset with
rotations of textures was acquired. The Kylberg Sintorn
Rotation Dataset is a generic texture dataset with simi-
lar types of textured surfaces as in the Outex dataset but
with the same general dataset structure (many samples of
each texture-rotation combination) as theMondialMarmi
dataset. Furthermore, the acquisition setup used in the
Kylberg Sintorn Rotation Dataset avoids the aforemen-
tioned limitations and artefacts.
The new dataset contains 25 texture classes, mainly con-

sisting of fabrics and arranged textured surfaces using
small articles. Figure 1 shows an example patch from
each class. The images were acquired using a Canon EOS
550D DSLR camera with a Sigma 17–70-mm zoom lens.
The camera was mounted above the textured surfaces, as
shown in Fig. 2. Fluorescent lights were placed on two
sides of the camera, just above the lens opening. Focus and
exposure settings were manually set once for each texture
class. The 5184 × 3456 images were acquired as lossless
compressed raw files (CR2). The raw files were corrected
for lens distortion, chromatic aberration and vignetting
formed by the Sigma lens. The corrections were per-
formed according to the settings in the “Adobe (SIGMA
17-70 mm F2.8-4 DC Macro OS HSM, Canon)” lens pro-
file in Adobe Photoshop CS5 and then saved as lossless
PNG files. The images were next converted to grey scale as
0.2989 R+ 0.5870 G+ 0.1140 B, where R, G and B are the
red, green and blue intensities, respectively. The selected
imaging conditions led to spatially over-sampled images,
and to get the textures in a more suitable scale for the rel-
atively small local neighbourhoods used in many texture
descriptors, the images were sub-sampled to half the orig-
inal size (2 592 × 1 728 pixels) using a Lanczos 3 kernel.
By this, the influence of sensor noise was also reduced.

2.1 Hardware rotation
The acquisition setup allows for rotation of the camera
around the central axis of the camera lens. By rotating the
camera rather than the textured surface, the same light-
ing conditions are kept throughout the image acquisition.
For each texture class, one image is acquired for each ori-
entation. The textures are imaged in the nine orientations
θ ∈ {0°, 40°, 80°, . . . , 320°} chosen not to be even multi-
ples of 90° for which the choice of interpolation methods
would not make a difference.

2.2 Rotation by interpolation
Five interpolation methods were used: nearest neighbour,
linear, third order cubic, cubic B-spline and Lanczos. The
images from the zero orientation were used to interpolate
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Fig. 1 Examples from the 25 texture classes in the Kylberg Sintorn Rotation Dataset. Row 1: cane sugar, canvas, couscous, fabric 1, fabric 2. Row 2:
fabric 3, fabric 4, fabric 5, flax seeds, knitwear 1. Row 3: knitwear 2, knitwear 3, lentils, oatmeal, pearl sugar. Row 4: rice, rug, rye flakes, seeds 1, seeds 2.
Row 5: sprinkles, floor tile, towel, wheat, wool fur

the eight other orientations using each of the interpola-
tion approaches. For the interpolation methods based on
convolution, Fig. 3 shows 1-D versions of the kernels in
spatial as well as in the Fourier domain. The ideal sinc
function is also shown for reference. The 1-D definitions
of the interpolation methods are as follows:

2.2.1 Nearest neighbour
The interpolation points are assigned the value of the
closest pixel:

knearest(x) =
{
1, |x| ∈[ 0, 0.5]
0, otherwise .

2.2.2 Linear
Assuming a linear transition between pixel intensities
gives

klinear(x) =
{
1 − |x|, |x| ∈[ 0, 1]
0, otherwise .
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Fig. 2 The texture dataset image acquisition setup. From left to right: overview, view from the camera towards the texture surface beneath, view
from the texture surface towards the camera and lights

Fig. 3 Interpolation kernels. 1-D plots of the interpolation kernels and
the sinc function in the spatial domain (top) and Fourier domain
(bottom)

2.2.3 Cubic
The third order cubic interpolation kernel is a third order
polynomial defined as in [15]:

kcubic(x) =
⎧⎨
⎩

3
2 |x|3 − 5

2 |x|2 + 1, |x| ∈[ 0, 1]
− 1

2 |x|3 + 5
2
2 − 4|x| + 2, |x| ∈ (1, 2]

0 otherwise
.

2.2.4 Lanczos
The Lanczos kernel is introduced in [16] and is a win-
dowed approximation to the sinc function:

kLanczos(x) =
{
sinc(x)sinc(x/a), x ∈ (−a, a)
0 otherwise ,

where

sinc(x) = sin(x)
x

,

and a ∈ N sets the number of lobes to include of the
sinc-function. In this paper, a = 3 is used, resulting in
the Lanczos kernel shown in Fig. 3. Interpolation of 2-D
signals using Lanczos kernels was introduced in [17].

2.2.5 Spline interpolation
In contrast to the interpolation methods based on con-
volution, spline interpolation fits piecewise polynomials
between the data points. The interpolated values are then
the values the polynomial assumes at the new sample
positions. The cubic B-spline interpolation used here,
introduced in [18], fits a third order polynomial of the
following form:

kBspline(x) =
⎧⎨
⎩

1
2 |x|3 − |x|2 + 4

6 , |x| ∈[ 0, 1]
− 1

6 |x|3 + |x|2 − 2|x| + 8
6 , |x| ∈ (1, 2]

0 otherwise
.
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The pieces fit smoothly together, forming a continuous
function, going through the original data points.
MATLAB R2012b and the toolbox DIPimage [19] were

used for all the interpolations.

2.3 Texture sample generation
All the images, rotated by hardware and software, are
divided into smaller texture samples. The region of an
image that is common among the different orientations is
a disk centred in the image with the diameter that equals
the height of the images (1728 pixels). The largest square
within this disk (with the side �1 728/√2� = 1 221 ) is
divided into 100 sub-squares with a size of 122×122 pixels
(since �1 222/10� = 122). The partitioning scheme is
illustrated in Fig. 4. Each texture sample is intensity nor-
malized to have a mean value of 127 and a standard
deviation of 40. The mean is set to be centred in the inter-
val [ 0, 255]. The standard deviation is set empirically so
that intensity values in the dataset generally do not get
mapped to integers /∈[ 0, 255] while retaining most of the
dynamic range of the dataset.

3 LBP-based descriptors
In the original definition of LBP [20], the eight connected
neighbours of a centre pixel are considered. The neigh-
bours are thresholded by the intensity of the centre pixel
and placed in a clockwise order producing an 8-bit binary
code. The feature vector consists of the occurrences (his-
togram) of the different binary codes in a region/patch.
The neighbourhood has been generalized to N samples
on a radius R from the centre pixel in [8], here denoted
LBPN ,R. The local binary code for the pixel position (xc, yc)
with grey value gc is defined as:

LBPN ,R(x, y) =
N−1∑
p=0

s(gp − gc)2p, (1)

Fig. 4 Partitioning scheme. Illustration of the partitioning scheme
used to extract texture samples

where

s(x) =
{
1, x ≥ 0
0, otherwise . (2)

If a point p does not coincide with a pixel centre, linear
interpolation is used to compute the grey value gp. Finally,
the histogram of occurring binary codes in a region is the
feature vector of this region.
One way of making LBP more robust to noise is to

threshold the value of a point, gp with the mean value
of the neighbourhood (including the centre pixel), gmean,
rather than with the value of the centre pixel gc. The centre
pixel is also thresholded with the mean value and included
in the binary code. This descriptor is called improved local
binary patterns (ILBP) and was introduced in [11]. It is
defined as

ILBPN ,R(x, y) =
N−1∑
p=0

s(gp − gmean)2p +

+ s(gc − gmean)2N , (3)

where

gmean = 1
N + 1

⎛
⎝N−1∑

p=0
gp + gc

⎞
⎠ , (4)

and the function s is defined as in Eq. 2. Note that pc is
part of the binary code making it N + 1 bits long.
In [21], local ternary pattern (LTP) descriptor is pro-

posed. The difference between neighbouring values gp and
the centre pixel value gc are encoded with three values
using a threshold value t:

s3(gp, gc, t) =
⎧⎨
⎩

1, gp ≥ gc + t
0, gc − t ≤ gp < gc + t

−1, otherwise
. (5)

In our implementation, as described above, the interval
coded with zero is half-bound while in [21] it is open.
Instead of using a code with base 3 to encode the three
states in Eq. 5, LTP uses two binary codes representing
the positive and the negative components of the ternary
code, i.e., two binary codes coding for the two states
{−1, 1}. These binary codes are collected in two sepa-
rate histograms, and as a last step, the histograms are
concatenated to form the LTP feature vector [21].
In analogy with the extension of LBP to ILBP, where

the neighbourhood mean value (gmean) is used as the
local threshold and the centre pixel (gc) is included in
the code, LTP can be extended to ILTP. This was done
in [22]. For ILTP, the same scheme of using two concate-
nated binary codes as the final feature vector as for LTP is
employed [22].
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3.1 Rotation invariance
There are different approaches to making the classical
LBP descriptor rotation invariant. One way is to group
the binary codes that are rotations of one another (i.e.
circular shifts of the binary code). Next, the occurrences
of each group are computed and used as feature values.
This approach is introduced in [8], and the descriptor is
denoted LBPriN ,R. For example, when N = 8 is used, there
are 36 such rotation invariant groups. Since occurrences
of rotation groups are considered, the relative distribu-
tion within rotation groups is lost. It also means that the
LBPriN ,R descriptor achieves rotation invariance by nor-
malizing rotation locally, as described in [23].
Another way of making LBP rotation invariant is intro-

duced in [9, 23]. The occurrences of rotation codes within
the rotation groups are not summed, as in LBPriN ,R, but
Fourier transformed and the resulting power spectrum is
used as the feature vector. The descriptor is called LBP
histogram Fourier features (LBPHF

N ,R). Since the Fourier
features are computed on the global histogram of binary
codes in the region/patch investigated, LBPHF

N ,R achieves
rotation invariance globally, and hence, retains the rel-
ative distribution within rotation groups [23]. However,
the LBPHF

N ,R descriptor in [9] only considers uniform
binary codes (binary codes with at the most two tran-
sitions between 0 and 1). It was generalized in [10] to
include all binary codes, uniform and non-uniform, and
called LBPDFT. Together with the LBPDFT descriptor, the
corresponding ILBPDFT descriptor was also introduced
in [10].
When having the aforementioned methods at hand,

two interesting additional descriptors can be compiled;
LTPDFT and ILTPDFT. Thus combining the generalized
version of the Fourier features from [10], achieving global
rotation invariance, with the promising descriptors LTP
from [21] and ILTP from [22].
In the tests reported on here, eight descriptors were

used, all with N = 8 samples on a radius R =
1; LBP8,1, LBPri8,1, LBPDFT8,1 , LTPDFT8,1 , ILBP8,1, ILBPri8,1,
ILBPDFT8,1 , ILTPDFT8,1 . The descriptors are listed in Table 1
together with the length of their respective feature vec-
tor. The parameters are selected to describe the textures
in their highest scale since the effects of interpolation
methods are expected to be most prominent here. N �=
9 is desirable since the dataset has nine equally spaced

Table 1 Texture descriptor dimensionality. Length of feature
vector using N = 8

Descriptor Dim. Descriptor Dim.

LBP8,1 256 ILBP8,1 511

LBPri8,1 36 ILBPri8,1 71

LBPDFT8,1 163 ILBPDFT8,1 325

LTPDFT8,1 326 ILTPDFT8,1 651

orientations and they would otherwise line up perfectly.
N 	 8 results in feature spaces of very high dimension-
ality (e.g. LBPDFT16,1 ∈ R

36 883 and ILTPDFT16,1 ∈ R
147 532)

and N = 8 samples the local neighbourhood at R = 1
well.

4 Classification procedure
The interpolation methods and texture descriptors are
evaluated by comparing the obtained classification accu-
racies. A first nearest neighbour (1-NN) classifier with
Euclidean metric is used. The 1-NN classifier is used
to be able to compare classification results obtained on
the same and fair basis. To validate the trained classi-
fier 10-folded cross-validation is performed by randomly
assigning each texture sample an index n ∈ {1, 2, . . . , 10},
creating 10 disjoint subsets with equal number of samples
(stratified samples). In the first cross-validation fold, sam-
ples with n ∈ {2, 3, . . . , 10} will be the training data and
samples with n = 1 will serve as test data. In the second
fold, samples with n = 2 will be the test data and the rest
is used for training, and so on.
The indices for the cross-validation folds are created

once and then kept fixed throughout the experiments.
The classification results from the 10 folds are combined
into a single confusion matrix estimation and the mean
and standard deviation of the classification accuracy is
computed.

5 Evaluating interpolationmethods and rotation
invariance

Before the evaluation a baseline is established for each
descriptor by training and testing on the θ = 0° orienta-
tion. Table 2 lists the means and standard deviations of the
classification accuracies of these baseline tests.
The descriptors are applied to all the texture samples,

rotated by hardware and by each of the five interpolation
methods. For the evaluation, the 1-NN classifier is trained
on features from the θ = 0° orientation followed by test-
ing on the remaining eight orientations, one by one. The
results are shown in Fig. 5. The established baselines are
shown as dashed red lines in Fig. 5. One dot in Fig. 5
corresponds to one classification test where the classi-
fier has been trained on θ = 0° orientation and tested
on one of the remaining orientations (using 10-folded
cross-validation).

Table 2 Mean classification accuracy at θ = 0°. Standard
deviations in brackets

Descriptor Mean Std. Descriptor Mean Std.

LBP8,1 96.4 (1.2) ILBP8,1 95.4 (0.9)

LBPri8,1 97.2 (0.9) ILBPri8,1 96.9 (0.9)

LBPDFT8,1 98.7 (0.7) ILBPDFT8,1 97.5 (0.7)

LTPDFT8,1 98.9 (0.5) ILTPDFT8,1 99.6 (0.4)



Kylberg and Sintorn EURASIP Journal on Image and Video Processing  (2016) 2016:17 Page 7 of 12

Fig. 5 Rotation invariance test. Plot of mean classification accuracies (in %) when training on the θ = 0° orientation and testing on θ ∈ {40°, 80°, . . .
320°} for each descriptor applied on textures rotated by hardware (HW) or nearest neighbour (NN), linear (LN), cubic (CU), B-spline (SP) and Lanczos
3 (LZ) interpolation. The horizontal red dashed lines are the mean accuracies when training and testing on θ = 0°. Each dot corresponds to the mean
classification accuracy from one rotation test. The black horizontal line segments in each column mark the median in each distribution

5.1 Interpolation method
Figure 5 shows that the obtained classification accura-
cies differ greatly for the different interpolation methods
(Additional file 1). This indicates that the characteristic
properties of the textures are retained to a widely varying
degree under rotation. Lanczos and B-spline interpolation
results in accuracies similar to, or even better than, that
of the hardware rotated textures. Nearest neighbour, lin-
ear and cubic interpolation all show lower accuracies for
all descriptors compared.
For the nearest neighbour rotated textures, some rota-

tion tests (dots in Fig. 5) show relatively high accuracies
for several descriptors. To investigate this, Fig. 6 shows
the result for the LBPri8,1 descriptor in more detail. Here,
each dot is a cross-validation fold in a rotation test. It can
be seen that the nearest neighbour has noticeably higher
accuracies at θ = 80° and θ = 280°. These two angles
correspond to the two dots that often have higher accura-
cies than the rest for the nearest neighbour interpolation
method in Fig. 5. Rotations of a digital image with even
multiples of 90° are ideal/lossless. The two orientations of
the textures θ ∈ {80°, 280°} in the dataset are the two that
are closest to even multiples of 90° and, hence, closest to
ideal rotations for which nearest neighbour is relatively
successful.
In a few cases, the result achieved using Lanczos and B-

spline interpolation exceeds the result obtained using the
hardware rotated textures, especially at θ ∈ {80°, 280°}, see

Fig. 6. This can, to a certain degree, be explained by that,
in the case of hardware rotations, the sensor noise is sam-
pled again and again for the different orientations, while
the interpolated images all originate from one image with
the sensor noise sampled once. The set of images which
are rotated by interpolation is hence more homogeneous,
and in addition, these two orientations are closest to
ideal orientations of the original image, as was discussed
above with respect to the higher performance for near-
est neighbour interpolation for those two angles. Another
explanation can be found by studying the per-class accu-
racies (data not shown). The classifier runs into problems
with class number 12 and 20 for the hardware rotated tex-
tures while they are easier to classify in the Lanczos and
B-spline interpolated data.
The tests were repeated using N = 8 and R = 2 for

the eight LBP descriptors (data not shown). The interpola-
tion methods appeared in the same order, accuracy-wise,
with one exception. The nearest neighbour interpolation
was found to perform on a level between linear and cubic
interpolation. The descriptors generally achieved higher
accuracies in the same order indicating that the selected
parameters for the comparison is not optimal if the best
overall classification result of the dataset is the objec-
tive. However, at R = 1, the effects of interpolation
methods and difference in the descriptor rotation invari-
ance are more prominent and this is the main focus of
this study.
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Fig. 6 Rotation invariance test for LBPri8,1 in detail. Plot of mean classification accuracies within each cross-validation fold for each orientation for the
LBPri8,1 descriptor applied on textures rotated by hardware (HW) or nearest neighbour (NN), linear (LN), cubic (CU), B-spline (SP) and Lanczos 3 (LZ)
interpolation. The black horizontal line segments in each column mark the median in each distribution

5.2 Rotation invariance
The rotation invariance of the descriptors can be eval-
uated in Fig. 5. Mean and standard deviation is also
reported in Table 3. A truly rotation invariant texture
descriptor should only show subtle variations over differ-
ent orientations of a texture. The classic LBP has obvious
problems in the rotation tests and fall far below the base-
line. The LBP-versions design to be rotation invariant do
achieve higher accuracies than the classic LBP. However,
none of the descriptors reach their baseline accuracy.
Figure 6 shows that the cross-validation folds give very

similar results. This means that the standard deviations
over orientations, see Fig. 5, are not due to inadequate
validation of the classifier but a genuine variation in
descriptor performance.

5.2.1 Referencemethods
To put the rotation invariance of the LBP-based descrip-
tor into perspective, three additional descriptors were

Table 3 Mean classification accuracy (and standard deviations in
brackets) across the eight rotation tests. A rotation test refers to
training on θ = 0° and testing on one of the other rotations
θ �= 0°

Descriptor Mean Std. Descriptor Mean Std.

LBP8,1 52.9 (8.9) ILBP8,1 52.0 (7.3)

LBPri8,1 77.4 (3.2) ILBPri8,1 85.9 (2.2)

LBPDFT8,1 79.3 (4.6) ILBPDFT8,1 79.4 (6.1)

LTPDFT8,1 89.5 (3.9) ILTPDFT8,1 90.4 (3.7)

evaluated in the same way. The rotation invariant Gabor
filter bank achieved a mean accuracy over rotation tests
of 90.4 %, Haralick features 75.3 % and MR8 56.6 %.
These values should be compared to the mean classi-
fication accuracies reported in Table 3 (also showed as
black lines in Fig. 5). The Gabor filter bank achieves as
good results as the best descriptor tested in the LBP
family

(
ILTPDFT8,1

)
while Haralick achieves just below

the local rotation invariant LBPr8,1i descriptor. Below fol-
lows condensed details of how the reference methods
were used.
For the Gabor filter bank, definitions and guidelines as

described in [7, 24] were used. The frequency ratio was
set to

√
2, the number of orientations was set to eight, and

the number of frequencies to six. The Gaussian envelope
was set to (γ , η) = (3, 2), and the kernel size was set to
19 × 19.
The Haralick features were defined and used as

described in [25]. The contrast, correlation, energy and
homogeneity measures were computed for four grey-
level co-occurrence matrices (four directions) using
quantization into 16 grey levels and a distance of two
pixels.
MR8 was defined and used as in [26].

6 Computational cost
To assess the computational cost of the different inter-
polation methods and texture descriptors, the relative
computation time was measured.
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Fig. 7 Computational cost for the different interpolation methods. The costs are given relative to linear interpolation

6.1 Interpolation methods
The computational time was measured while rotating the
2500 texture samples to the eight orientations. Figure 7
shows the computation time relative to rotating the tex-
ture sample using linear interpolation. The two best
performing interpolation methods (in terms of retain-
ing texture information) are slightly more computationally
expensive; a factor of 1.27 for Lanczos and 1.45 for Spline.

6.2 Texture descriptors
The computational time for the different descriptors was
measured while applying them to the 2500 texture sam-
ples of the 0° orientation. Figure 8 shows the computation

Fig. 8 Computational cost for the texture descriptors. The costs are
given relative to the LBP descriptor

time relative to the LBP descriptor. The slowest descrip-
tor is the ILTPDFT being about 2.5 times slower than LBP.
However, all the descriptors in the LBP family evaluated
in this manuscript are computationally cheap compared
to the filter-based texture descriptors used here as ref-
erence methods. The Gabor filter bank takes about 37
times as long to compute as the basic LBP. The numbers
may vary with implementations and systems but convolv-
ing the texture sample with a whole bank of filter kernels
is more computationally expensive than computing these
LBP-variants.

7 Rotation representation in classification
To investigate the approach of adding virtual training sam-
ples by rotating existing training samples, an increasing
number of orientations are used in the training data, from
one to eight. The classifier is then tested on the remaining
orientations. Consequently, the training and test sets are
still disjoint, sample and orientation-wise. The results are
shown in Fig. 9. Using two orientations in the training data
generally results in greatly improved classification accura-
cies and lower standard deviations. In fact, several of the
texture measures approach their baseline. Another strik-
ing result is that the choice of interpolationmethods is less
important. The clear result seen in Fig. 5, that Lanczos 3
and B-spline outperform the other interpolationmethods,
is drastically reduced when the training data is somewhat
more heterogeneous in terms of represented orientations.
In the first test, using training samples ∈ {0°, 40°},

the training set becomes twice as large. To make sure
that the observed improvement originate from better
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Fig. 9 Rotation invariance when training on two orientations. Plot of
mean classification accuracies (in %) when training on the two
orientations θ ∈ {0°, 40°} and testing on θ ∈ {80°, 120°, . . . 320°} for
each descriptor applied on textures rotated by hardware (HW) or
nearest neighbour (NN), linear (LN), cubic (CU), B-spline (SP) and
Lanczos 3 (LZ) interpolation. The horizontal red dashed lines are the
mean accuracies when training and testing on θ = 0°. The grey dots
in the background correspond to the mean classification accuracies
achieved when the size of the training data is halved. The horizontal
line segmentsmark the median in each distribution

representation of the rotated textures rather than a larger
training set, we carried out a complementary test where
every other sample was removed from the training set,
making it the same size as in the previous tests. These
results are shown as grey dots in the background in Fig. 9
and prove that the improvement is not from an increase
in the number of training samples.
Figure 10 shows how the classification accuracies

change when evenmore orientations are used in the train-
ing data, ranging from one (as in the evaluation reported
on in Section 4) to eight orientations. The additional ori-
entations are the Lanczos interpolated data, following the
scenario of adding “artificial” samples to the training data.
It shows that the introduction of a second orientation
in the training data is very beneficial in terms of tex-
ture recognition. For the less rotation invariant texture
descriptors, additional orientations (more than two) fur-
ther improve the classification accuracies even though the
achieved accuracies level out and do not reach the levels
of the rotation invariant descriptors. This trend is not as
clear for themore rotation invariant descriptors, for which
a third and fourth orientation only improves the classifi-
cation accuracies slightly. Overall, ILTPDFT8,1 and LTPDFT8,1
are found at the top with mean accuracies between 99 and
100 % when at least four orientations are included in the
training data.

8 Conclusions
Based on the performed experiments we conclude that

• Lanczos 3 interpolation, closely followed by B-splines
outperform the other interpolation strategies in all
tests. The same levels of texture recognition are
achieved using these two interpolation methods as
those using hardware-rotated textures.

Fig. 10 Increasing the number of rotations in training. Plot of mean classification accuracies with increasing number of Lanczos interpolated
orientations in the training data. The additional orientations included in the training data are excluded from the test data
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• As expected, the interpolation methods closer to the
ideal sinc function retain the texture information best.
The commonly used linear and cubic interpolation
clearly have shortcomings in preserving texture
information in the setting of texture recognition.

• The best performing interpolation methods are only
slightly more computationally expensive. Lanczos
stands out as it is both the best interpolation method
in terms of preserving texture information and faster
to compute than the second best interpolation
method B-spline.

• Both the local rotation invariant versions (by
counting occurrences of rotation groups), and the
global rotation invariant versions (by computing
Fourier descriptors of the groups) of the LBP-based
texture descriptors are less rotation variant than the
classic LBP descriptor but they still suffer from
rotation variance.

• The LTPDFT and ILTPDFT descriptors perform better
than the other tested descriptors. They both show
high classification accuracies and low standard
deviations over different orientations.

• The ILTPDFT achieves the same high classification
accuracy as an optimized and rotation invariant
Gabor filter bank. The other reference descriptors are
inferior to all the tested rotation invariant forms of
the LBP descriptors.

• Even though the more advanced descriptors in the
LBP family are more computationally expensive than
the basic LBP, they are all computationally
inexpensive compared to common filter bank-based
texture descriptors such as Gabor filter banks and
MR8.

• Including several different orientations of the
textures in the training data has great positive impact
on the classification accuracies. This also
compensates to a large extent the shortcomings of
choosing a simple interpolation method. Hence, a
simple strategy that should be generally considered!

Linear and cubic interpolation is still commonly used
even though they are easily outperformed in terms of
retaining texture information. For example, in the image
processing software ImageJ, linear interpolation is the
default, in GIMP cubic is default (although Lanzos 3 is
offered as an option) and MATLAB only supports nearest
neighbour, linear and cubic interpolation when rotating
images. The software library OpenCV has linear interpo-
lation as default while cubic is optional.
Furthermore, these tests show that the use of rotation

invariant texture descriptors may not be enough to
achieve rotation invariant texture recognition; represent-
ing different orientations of the textures in the train-
ing data shows to be very important, even if the extra

orientations are artificially generated by rotating already
existing samples by means of interpolation.
In the light of these findings, the use of linear interpola-

tion to compute the intensity samples in the local neigh-
bourhoods in all the LBPN ,R-based descriptors should
perhaps be revised.
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