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Abstract

In this paper, we present a modified clustering algorithm to segment color images. The proposed technique is
based on the robust c-prototypes algorithm with some modifications in its objective function and updating
equations. The JK chromatic subspace of the IJK color space is used to segment color images. The algorithm
performance is tested on real images with natural artifacts that make the segmentation process difficult.
Additionally, a remote sensing image is segmented to demonstrate that the proposed algorithm can be used in
real applications. Simulation results indicate that the proposed method is more effective than others proposed in
the literature in terms of objective and subjective criteria.

Keywords: Fuzzy c-means, Robust c-prototypes, IJK color space, Segmentation
1 Introduction
Clustering is the process to discover and organize ob-
jects into subsets of similar objects called clusters. Pixel
clustering in three-dimensional (3D) color space on the
basis of color similarity is one of the current approaches
in the field of color image segmentation. Colors in an
image create dense clusters in the color space in a nat-
ural way and look like three pixel clouds representing
clusters in the color space. Clustering is often seen as an
unsupervised classification of pixels, and usually, a priori
knowledge of the image is not used during the clustering
process [1].
Different clustering techniques have been proposed

to color image segmentation [2]. One of the most
popular clustering techniques is the fuzzy c-means
(FCM) technique [3]. In general, the FCM algorithm is
a highly effective methodology to segment noise-free
images, but in the presence of natural artifacts (noise,
intensity, or color inhomogeneity in the regions, the re-
gions with similar textures, shadows, object reflections,
etc.), the FCM has two shortcomings that make it very
sensitive: in its conventional nomenclature, it does not
consider any spatial information in the image context
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[4-8], and the second one is that the objective function
can be seen as a formulation of the least squares
method, in which one tries to minimize the error be-
tween the feature vector and the vector with the cen-
ters of the groups. Outliers have a great effect during
minimization since there is a quadratic function in the
objective function of the FCM algorithm; so, it is neces-
sary to use a quadratic function with the property of
being less increasing, and thereby control the influence
of atypical information.
Many researchers have taken FCM algorithm as the

starting point and modify it to solve the first shortcom-
ing. In [4], a spatial function is introduced into the
membership function; this spatial function is the sum-
mation of the membership function in the neighbor-
hood of each pixel under consideration. Ahmed et al.
[5] modified the objective function of the FCM by add-
ing a regularizer which considers the labels of all the
neighboring voxels in an image to compensate the bias
field effect of the data. Other authors such as Zhang
and Chen [6] follow the same work of Ahmed et al. but
their algorithms introduced the median- and mean- fil-
tered images, which can be computed in advance and
hence, can reduce the computation time. Zhao et al. [7]
used an adaptive spatial parameter for each pixel that
was designed to make the non-local spatial information
of each pixel playing a different role to guide the noisy
image segmentation. Liu and Pham [8] modified the
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inal work is properly cited.

mailto:fgallegosf@ipn.mx
http://creativecommons.org/licenses/by/2.0


Mújica-Vargas et al. EURASIP Journal on Image and Video Processing 2013, 2013:63 Page 2 of 12
http://jivp.eurasipjournals.com/content/2013/1/63
FCM by adding a spatial penalty term into the objective
function. The penalty term considers the fuzzy mem-
berships from the neighbors of the current samples,
often a pixel or voxel in 2D or 3D images. By this
means, the clustering algorithm can take both the
image-intensity information and spatial information
into account and hence is more robust to noise and
outliers producing better segmentation results. Other
researchers have modified the FCM algorithm to get
more robust segmentation hybrid algorithms by using
other important approaches. For example, in [9], a
method that combines the benefits stemming from
the sound spatial coherency modeling capabilities of
the Hidden Markov random field (HMRF) model and
the enhanced flexibility obtained by the FCM algorithm
was proposed. Siang and Ashidi [10] proposed an ap-
proach that analyzes the uniformity of the regions in
color images by the histogram thresholding technique,
and then the FCM is used to improve the compactness
of the clusters forming uniform regions. A proposal
based in the use of hyperplanes in the FCM algorithm
and spatial constraints is presented in [11]; in this algo-
rithm, a spatial regularizer is added into the fuzzy
hyperplane-based objective function, but taking into ac-
count information of inherently spatial data. In [12],
the authors presented an approach that relies on cluster
center initialization and color quantization allowing
faster and more accurate convergence such that it is
suitable to segment very large color images. An analysis
of different methods of initialization for the k-means al-
gorithm for segmenting images is presented in [13].
Dae-Won et al. proposed in [14] an algorithm that ex-
tracts the most vivid and distinguishable colors referred
as the dominant colors, the color points closest to these
dominant colors are selected as the initial centroids in
the FCM calculations using a fuzzy membership model
between a color point and a reference color. Finally, an
approach designed to promote an optimal initialization
scheme of the FCM algorithm using a single point it-
erative weighted based upon the prior information was
presented in [15].
A method for solving the second of the shortcomings

of the FCM algorithm is based on the exploitation of the
robust estimators especially the M-estimator [16]. This
proposal was studied by Frigui and Krishnapuram [17],
who designed their own robust estimator, based on spe-
cial loss and weight functions. In this algorithm, the ro-
bust estimators allow the control of the influence of
outliers in calculating the centers of the all groups. This
paper is focused on the second shortcoming of the FCM
algorithm. For this, we propose to use classical M-esti-
mators and as the robust framework [18], states to use
their loss and influence functions instead. We extent
the proposed algorithm in a bidimensional clustering
approach using the chromatic subspace in the IJK color
space to segment color images [19].

2 Background
2.1 Fuzzy c-means clustering
Fuzzy cluster analysis allows gradual membership of data
points to clusters measured as degrees in [0, 1] provid-
ing the flexibility needed to express that data points can
belong to more than one cluster. Additionally, the mem-
bership degrees offer a finer degree of detail of the data
model and can express how a data point should belong
to a cluster or not [16,20].
Let X = {x1, …, xn} be the set of given featured data

and let c the number of clusters (1 < c < n) represented
by the fuzzy set Cj(j = 1, …, c). Then, Uf = (uij) is called
the fuzzy cluster partition of X if ∑n

i¼1uij > 0, ∀j ∊ {1, …, c}

and
Xc

j¼1
uij ¼ 1 , ∀i ∊ {1, …, n} hold. A fuzzy cluster

model of a given data set X into c clusters is defined to be
optimal when it minimizes the following objective func-
tion under the above constraints,

J f X;Uf ;C
� � ¼Xn

i−1

Xc
j¼1

umij ∥xi−cj∥
2; ð1Þ

where ‖xi − cj‖
2 is the square of the Euclidean distance

from feature vector xi to the center of the class cj and the
parameter m ≥ 1 is a weighting exponent called the fuzzi-
fier. The value of m determines the ‘fuzziness’ of the clas-
sification; when m = 1, there is a hard assignment of the
data in the classes (k-means algorithm), on the other hand
when m = 2 the data are gradually assigned with an inter-
val of [0,1] to the different groups (FCM algorithm). The
objective function Jf is alternately optimized using the
membership degrees uij and the cluster centers cj by set-
ting the derivative of Jf with respect to the parameters
equal to zero taking into account the constraint stated
above. Finally, the equations for the two iterative steps that
form the FCM algorithm are given as follows:

uij ¼ 1Xc

k¼1

∥xi−cj∥2

∥xi−ck∥2

� � 1
m−1

¼ ∥xi−cj∥− 2
m−1Xc

k¼1
xi−ck∥− 2

m−1

ð2Þ

cj ¼
Xn

i¼1
umij xiXn

i¼1
umij

ð3Þ

2.2 Robust m-estimator
M-estimators are a generalization of maximum likeli-
hood estimation (MLE) and were proposed by Peter
Hubert [18,21-23]. Their definition is given by a robust loss
function ρ(x) = ln (f(x)), connected with the probability
density function f(x) for the sample data xi, i = 1, …, n.
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The objective of M-estimators is to find an estimation θ̂
of such that

θ̂ ¼ argmin
θ∈Θ

Xn
i¼1

ρ xi−θð Þ
 !

ð4Þ

The estimation of the localization parameter θ can be
found by calculating the partial derivative of ρ with re-
spect to θ introducing the influence function ψ(x, θ) = ∂
ρ(x, θ)/ ∂ θ,

Xn
i¼1

ψ xi−θð Þ ¼ 0 ð5Þ

Definition (5) is not fully equivalent to (4). However, it
is used to find a solution for the minimization (4). Both
definitions of the M-estimator are implicit, so are neces-
sary iterative techniques for the calculation of the out-
put. Here, we derive one of them by assuming

limx→0
ψ xð Þ
x ¼ c. We can rewrite (5) in the form,

Xn
i¼1

ψ xi−θð Þ ¼
X
xi≠0

ψ xi−θð Þ
xi−θ

xi−θð Þ ð6Þ

from which we can easily find an implicit formula for
the estimate,

θkþ1 ¼

Xn
i¼1

ωk
i;θxi

Xn
i¼1

ωk
i;θ

; ωi;θ ¼
ψ xi−θð Þ
xi−θ

xi≠0

c otherwise

8<
: ð7Þ

where ωi,θ is commonly called the weight function. The
iterative solution of the M-estimator is usually called W-
estimator.

3 Proposed approach
3.1 Robust c-prototypes
As we see in section 2.1, the FCM algorithm is based on
a least squares objective function. It is well known that
the least square approach is highly sensitive to aberrant
points, which implies that FCM gives unsatisfactory re-
sults when it is applied to data sets contaminated with
noise and outliers. To solve this problem, Frigui and
Krisnapuram [16,17] proposed an algorithm called Ro-
bust c-prototypes with the following objective function,

J r X;Uf ;C
� � ¼Xn

i¼1

Xc
j¼1

umij ρj ∥xi−cj∥
2

� �
: ð8Þ

There is one robust loss function ρj associated with
each cluster. As conventional algorithm, the optimiza-
tion of this objective function under the same condi-
tions, yields the following updated expressions for the
membership matrix and the vector with the centers of
the groups:

uij ¼ 1Xc

k¼1

ρj ∥xi−cj∥2ð Þ
ρj ∥xi−ck∥2ð Þ

� � 1
m−1

ð9Þ

Xn
i¼1

uij
� �m

wij
∂ ∥xi−cj∥2
� �

∂ci
¼ 0; where wij ¼

∂ρj ∥xi−cj∥
2

� �
∂ ∥xi−cj∥2
� �

ð10Þ
It is clear that this algorithm can be seen as a

generalization of the M-estimator for estimating the pro-
totypes of the FCM algorithm. The expression for the
upgrade of the prototypes vector (centers of the groups)
is obtained by solving Equation 10, iteratively, which is
equivalent to solving the W-estimator (7). By conveni-
ence, our proposal makes two significant changes of this
algorithm. First, we use the same loss function for all
groups. After, the minimization of the objective function
with respect to the prototype vector is prevented from
entering a new iterative cycle to solve the expression (7)
(we must remember that the FCM algorithm is an itera-
tive method), so instead of using the W-estimators, we
use the influence function ψ. As was established in sec-
tion 2.2, the second definition of the M-estimators is
based on the existence of the influence function ψ(x, θ) =
∂ ρ(x, θ)/ ∂ θ. Thus, it is not possible to rewrite the ex-
pression (10) in terms of the influence function for the
W-estimators. Based on these two arguments, the ob-
jective function can be written as follows:

J rf X;Uf ;C
� � ¼Xn

i¼1

Xc
j¼1

umij ρ ∥xi−cj∥2
� � ð11Þ

In this algorithm and its extension to the color space,
we use a gradual assignment of the data to the groups as
the conventional FCM algorithm with a value of m = 2.
To optimize Jrf with respect to the membership matrix,
we use the Lagrange multiplier technique to obtain the
following updated equation:

uij ¼ 1Xc

k¼1

ρ ∥xi−cj∥2ð Þ
ρ ∥xi−ck∥2ð Þ

� � 1
m−1

ð12Þ

To minimize Jrf with respect to the prototype vec-
tor, we fix the membership matrix and set the gradi-
ent to zero

cj ¼
Xn

i¼1
umij ψ ∥xi−cj∥2

� �
xiXn

i¼1
umij ψ ∥xi−cj∥2

� � ð13Þ
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3.2 Color robust c-prototypes
The above stated algorithm lets us segment grayscale
images, but this idea could be extended on any color
space. We extend this proposal to segment color images
using different color spaces, but this extension is not
immediate. For instance, the RGB color space requires
to compute Uf and Cj, 2

8 ⋅ 28 ⋅ 28 times, this is equiva-
lent to run the classical FCM algorithm in an image of
4,096 × 4,096 pixels. Since this is computationally in-
tractable in practice, it is necessary to use a color space
quantization into qh bins where h is the channel index
[12]. Most of the color spaces use three channels (i.e.,
RGB, HSV, CIELab, and IJK) to describe each pixel in an
image, so that we have to define q1, q2, and q3 and we
consider that each color component is divided into the
same number of bins q1 = q2 = q3 = q.
In this paper, we propose to apply the proposed color

robust c-prototypes (ColorRcP) clustering algorithm in
the JK chromatic subspace of the IJK color space. This
color space provides that a convenient representation
should yield distances and provide independence be-
tween chromatic and achromatic components [24].
The best know system for color representation is the

RGB (red, green, blue) whose components have values
in the interval [0,255]. A color specification system
based on luminosity, saturation, and hue form a percep-
tual representation system that is obtained by some
transforms applied to the RGB system [19].
Every color q from the RGB system is described by a

vector having three scalar components q = (R, G, B). Let
z1, z2, and z3 be three real and positive numbers verify-
ing the equality z1 + z2 + z3 = 1. For q1 = (R1, G1, B1) and
q2 = (R2, G2, B2) the following scalar product is defined
in the RGB space as follows:

〈q1; q2〉 ¼ z1R1R2 þ z2G1G2 þ z3B1B2

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1R2 þ z2G2 þ z3B2

p ð14Þ

Let there be the following basis in the RGB space:
f1 = (1, 1, 1), f2 = (1, 0, 0), and f3 = (0, 1, −1). Using the
Gram-Schmidt procedure, it results the following ortho-

normal basis: e1 = (1, 1, 1), e2 ¼
ffiffiffiffiffiffiffi
1−z1
z1

q
;−

ffiffiffiffiffiffiffi
z1

1−z1

q
;−

ffiffiffiffiffiffiffi
z1

1−z1

q� �
,

and e3 ¼ 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffi

z3
z2 1−z1ð Þ

q
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

z3 1−z1ð Þ
q� �

. The coordinates I, J,

K for the IJK orthonormal coordinates system in the basis

e1, e2, e3 are computed by I = 〈q, e1〉 = z1R + z2G + z3B, ¼ q;

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1 1−z1ð Þp

R− z2Gþz3B
z2þz3

� �
, and K ¼ 〈q; e3〉 ¼

ffiffiffiffiffiffiffi
z2z3
1−z1

q
G−Bð Þ; where z1, z2, and z3 can be taken as constants with
a value of 1

3 [23]. As a result, the components of the IJK

space can be computed as I ¼ RþGþB
3 ; J ¼ 2R−G−B

3
ffiffi
2

p , and

K ¼ G−Bffiffi
6

p :
In order to avoid the influence of non-uniform illu-
mination, we apply the clustering procedure only for the
JK chromatic subspace. By using the color quantification
q stated above, we define q1 and q2 corresponding to the
J and K color components. Then, the objective function
to minimize is,

J rJK X;Uf ;C
� � ¼ Xn

q1¼1

Xn
q2¼1

Xc
j¼1

umq1j;q2jρ ∥Xq1;q2−cj∥
2

� �
ð15Þ

subject to
Xn

q1¼1
∑n
q2¼1uq1j;q2j > 0 , ∀j ∊ {1, …, c} andXc

j¼1
uq1j;q2j > 1, ∀(q1, q2) ∊ {1, …, n}2.

Taking into account the consideration that each color
component J and K are divided into the same number of bins
q1 = q2 = q. We can rewrite the objective function (15) as

J rJK X;Uf ;C
� � ¼Xn2

q¼1

Xc
j¼1

umqjρ ∥Xq−cj∥2
� �

: ð16Þ

Since the gradient of J rJK with respect to uqj and cj van-
ishes when reaching the local optimum, and taking into
account the same conditions to minimize the objective
function (16), it is easy to show that the optimal updat-
ing equations are given by

uqj ¼ 1Xc

l¼1

ρ ∥xq−cj∥2ð Þ
ρ ∥xq−cl∥2ð Þ
� � 1

m−1
ð17Þ

cj ¼
Xn2

q¼1
umqjψ ∥xq−cj∥2

� �
xqXn2

q¼1
umqjψ ∥xq−cj∥2

� � ð18Þ

4 Results and comparisons
The proposed ColorRcP clustering algorithm is evaluated
here, and its performance has been compared with
the following FCM-based segmentation methods: the
Hidden Markov random field FCM (HMRFFCM) [9], the
histogram thresholding FCM (HTFCM) [10], the fuzzy
hyper-prototype clustering (FHCS) [11], the quantized
FCM (QFCM_S2) [12], the usual-initialization FCM
(UFCM) [13], the color-clustering FCM (CFCM) [14],
and the single point iterative weighted FCM (SWFCM)
[15]. We also compare our proposal with other image
segmentation techniques beyond FCM such as the pe-
nalized inverse expectation maximization (PIEM) which
extracts the features for each pixel using the Gabor filter,
and the classification of pixels in different regions is
done by the expectation maximization (EM) algorithm
[25] and the segmentation by clustering then labeling



Figure 1 Subset of real images from the Berkeley Segmentation Data Set 500 (BSD500). (a) 35070, (b) 42049, (c) 67079, (d) 80099, (e)
113044, (f) 118035, (g) 124084, (h) 135069, (i) 196073, (j) 198023, (k) 208001, and (l) 210088.

Table 1 Average performance calculated for all
segmented images

Algorithms Color space PRI VOI GCE BDE

HMRFFCM RGB 0.724 2.264 0.218 4.696

HTFCM RGB 0.709 2.664 0.285 4.847

FHCS RGB 0.728 2.250 0.226 4.621

SCLpost (λ = 200) CIELab 0.785 2.273 0.228 4.603

PIEM CIELab 0.757 2.539 0.282 4.733

QFCM_S2 CIELab 0.784 2.121 0.197 4.154

ColorRcPSimple-Cut IJK 0.795 1.984 0.174 4.093

ColorRcPHampel IJK 0.813 1.901 0.169 3.983

ColorRcPGerman-McClure IJK 0.798 2.066 0.172 4.095

ColorRcPAsad IJK 0.808 1.982 0.194 4.085

ColorRcPInsha IJK 0.810 1.924 0.176 4.012
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(SCLpost) which uses small homogeneous regions to
adopt a 3D feature vector obtained through the color
space, and then, the clustering is done by a hybrid ap-
proach that combines the mean-shift with a semi-
supervised discriminant analysis algorithm [26].
When a set of real images are segmented, the criteria

used to compare the segmentation performance of vari-
ous algorithms were the Probabilistic Rand Index (PRI)
for evaluation of the results obtained from the tested al-
gorithm to a set of manually segmented images [27], the
Variation of Information (VOI) for quantification of the
loss of information and the gain between two clusters
belonging to the lattice of possible partitions [28], the
Global Consistency Error (GCE) for quantification to
what extent a segmentation can be viewed as the refine-
ment of the other [29], and the Boundary Displacement



Table 2 M-estimators used in the proposed method

Loss function ρ(x) Influence function ψ(x)

Simple-Cut

x2

2
; xj j≤r

r; otherwise

(
x; xj j≤r
0; otherwise

	

Hampel

x2

2
; 0≤ xj j < α

α xj j; α≤ xj j < β
α
r−β

; β≤ xj j < r

r; xj j > r

8>>>>><
>>>>>:

x; 0≤ xj j < α
αsgn xð Þ; α≤ xj j < β

α
r− xj j
r−β

sgn xð Þ; β≤ xj j < r

0; xj j > r

8>>><
>>>:

German-McClure
x2=2
1þx2 x

1þx2ð Þ2

Asad

x2

45r8
3x8−10r4x4 þ 15r8
� �

; xj j≤r
8r2

45
; otherwise

8><
>: 2x

3
1−

x
r

� �4� �2

; xj j≤r
0; otherwise

8<
:

Insha
r2

4
tan−1

x
r

� �2
þ r2x2

r4 þ x4


 �
; xj j≥0

x 1þ x
r

� �4
 �−2
; xj j≥0

Figure 2 Segmentations of image 35070 (c = four regions). (a) HMRFFCM, (b) HTFCM, (c) FHCS, (d) SCLpost (λ = 200), (e) PIEM, (f) QFCM_S2,
(g) ColorRcPSimple-Cut, (h) ColorRcPHampel, (i) ColorRcPGerman-McClure, (j) ColorRcPAsad, and (k) ColorRcPInsha.
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Error (BDE) for evaluation of the average displacement
error of boundary pixels between two segmented images
by computing the distance between the pixel and the
closest pixel in the other segmentation [30]. The Kappa
coefficient K̂ was used to summarize the segmentation
performance when a remote sensing image is segmented
[31]. The Kappa statistics considers a measure of the
overall accuracy of the image classification and individ-
ual category accuracy as a means of actual agreement
between classification and observation [32]. Many re-
search works in image segmentation use these indexes
to compare the performance of various methods, for this
reason, we use these measures to evaluate our proposed
algorithms [27-30].
The PRI index is defined as follows [27]:

PRI S;Gkð Þ ¼ 2
N N−1ð Þ

X
i;j;i<j

p
cij
ij 1−pij
� �1−cij� �

; ð19Þ
Figure 3 Segmentations of the image 113044 (c = two regions). (a) HM
(f) QFCM_S2, (g) ColorRcPSimple-Cut, (h) ColorRcPHampel, (i) ColorRcPGerman-Mc
where N is the number of pixels, S is the segmentation
provided by the tested algorithm, cij is a Boolean function

denoting if li
S = lGk

i , pij is the expected value of the Ber-

noulli distribution for the pixel pair, lGk
i is the label pixel xi

in the kth manually segmented image, and li
S is the label of

pixel xi in the tested segmentation. The ground-truth set
is defined as {G1, G2, …, GL}, where L is the number of
manually segmented images. The PRI index is in the range
[0, 1] where high values indicate a large similarity between
the segmented images and the ground-truth; the VOI
index [28] is

VOI S;Gkð Þ ¼ H Sð Þ þH Gkð Þ−2I S;Gkð Þ; ð20Þ

where H ⋅ð Þ ¼ −∑c
i¼1

ni
n
log

ni
n

is the entropy, ni being the

number of points belonging to the ith cluster, I S;Gkð Þ ¼
Xc

i¼1

Xc

j¼1

ni;j
n

log
ni
n

nj
n

is the mutual information
RFFCM, (b) HTFCM, (c) FHCS, (d) SCLpost (λ = 200), (e) PIEM,

Clure, (j) ColorRcPAsad, and (k) ColorRcPInsha.
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between two clustering, and ni,j is the number of points in
the intersection of cluster i of S and j of Gk. The VOI is a
distance, the smaller the VOI value is, the closer the seg-
mentation obtained and the ground-truth are; the GCE
index [29] is

GCE S;Gk ; xið Þ ¼ 1
n
min

Xn
i¼1

E S;Gk ; xið Þ;
Xn
i¼1

E Gk ; S; xið Þ
 !

;

ð21Þ

where E S;Gk ; xið Þ ¼ R S;xið Þ R Gk ;xið Þj j
R S;xið Þj j is a measure of error at

each pixel xi, |
.| is the cardinality, \ is the set difference,

and R(S,xi) is the set of pixels corresponding to the region
in segmentation S that contains the pixel xi. The better the
segmentation S respect to the ground-truth is when the
closer GCE is to zero; the BDE index [30] is

BDE S;Gkð Þ ¼ 1
2

DGk
S þ DS

Gk

� �
; ð22Þ
Figure 4 Segmentations of the image 196073 (c = three regions). (a) H
(f) QFCM_S2, (g) ColorRcPSimple-Cut, (h) ColorRcPHampel, (i) ColorRcPGerman-Mc
where DGk
S is a distance distribution signature obtained by

adding the distances over all points of S; and the Kappa
coefficient is computed from [31,32]

K̂ ¼
Nc

Xν
i¼1

xii−
Xν
i¼1

xiþxþi

N2
c−
Xv
i¼1

xiþxþi

; ð23Þ

where xii are the diagonal entries of the confusion matrix,
xi+ and x+i indicates the sum of row i and the sum of col-
umn i of the confusion matrix, respectively, Nc is the num-
ber of elements in the confusion matrix, and ν = 9 is the
length of the sample data in a current 3 × 3 window. A
value of zero indicates no agreement, while a value of 1.0
shows perfect agreement between the classifier output and
the reference data.
Figure 1 depicts a subset of real images from the

Berkeley Segmentation Data Set 500 (BSD500) used in
MRFFCM, (b) HTFCM, (c) FHCS, (d) SCLpost (λ = 200), (e) PIEM,

Clure, (j) ColorRcPAsad, and (k) ColorRcPInsha.



Figure 5 Segmentations of the image 210088 (c = three regions). (a) HMRFFCM, (b) HTFCM, (c) FHCS, (d) SCLpost (λ = 200), (e) PIEM,
(f) QFCM_S2, (g) ColorRcPSimple-Cut, (h) ColorRcPHampel, (i) ColorRcPGerman-McClure, (j) ColorRcPAsad, and (k) ColorRcPInsha.
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Figure 6 Segmentation results on a remote sensing image in c = eight regions. (a) sub-region of Zhalong Nature Reserve on October 21,
2001 [33], (b) UFCM, (c) CFCM, (d) SWFCM, (e) ColorRcPSimple-Cut, (f) ColorRcPHampel, (g) ColorRcPGerman-McClure, (h) ColorRcPAsad, and (i) ColorRcPInsha.

Table 3 Comparative results in terms of Kappa coefficient

Algorithms Kappa

UFCM 0.755

CFCM 0.736

SWFCM 0.841

ColorRcPSimple-Cut 0.864

ColorRcPHampel 0.879

ColorRcPGerman-McClure 0.853

ColorRcPAsad 0.866

ColorRcPInsha 0.875
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the tests. This subset includes a set of real-world color
images along with their segmentation maps provided by
different people. In these images, a number of difficult as-
pects come in the image segmentation process, such as
natural noise, artifacts, and varying imaging conditions.
Table 1 presents the average performance criteria (PRI,

VOI, GCE, and BDE) obtained by the proposed Col-
orRcP algorithm, as well as the comparative algorithms
after segmenting all images. We note that the compara-
tive HMRFFCM, HTFCM, and FHCS algorithms are
based on the RGB color space [9-11], and the PIEM,
QFCM_S2, and SCLpost algorithms are based on the
CIELab color space [12,25,26]. As can be seen in Table 1,
the proposed algorithm has better results than the com-
parative algorithms in its respective color space.
The optimal parameters for the proposed ColorRcP al-

gorithm are set to initialize randomly, m= 2 for fuzzifier,
ε = 1E-6 for the tolerance parameter that controls the it-
eration of the algorithm as well as the quality of the
clustering procedure, in our algorithm is the minimum
error in the objective function used as a termination cri-
terion, and the number of clusters c are chosen depend-
ing on the image to be segmented. The M-estimators
used to control the influence of the atypical information
are presented in Table 2 [22,33,34].
Some visual results are depicted from Figures 2,3,4,

and 5. As can be seen in the images, the ColorRcP



Mújica-Vargas et al. EURASIP Journal on Image and Video Processing 2013, 2013:63 Page 11 of 12
http://jivp.eurasipjournals.com/content/2013/1/63
method can segment the images better and not distort
the edges in comparison with other methods.
To demonstrate the performance of the proposed Col-

orRcP clustering scheme in real applications, a sub-
region from the remote sensing image ‘Zhalong Nature
Reserve’ (see Figure 6a) is segmented [15]. The proposed
algorithm is compared with other approaches designed
to segment this kind of images, such as the UFCM,
CFCM, and SWFCM algorithms [13-15].
As in the first test, the parameters for the ColorRcP al-

gorithm were set as initialized randomly, m= 2 for fuzzi-
fier and a termination criterion of ε = 1E-6 based on the
minimum error and in the objective function is calcu-
lated in each iteration. The remote sensing image was
segmented in c = eight regions by using the different M-
estimators presented in Table 2.
Table 3 shows the performance segmentation of

different algorithms in terms of Kappa coefficient
where one can see that the proposed method has a su-
perior value than the other algorithms used as com-
parative. From Figure 6, the best visual results are
provided by the proposed method with different M-es-
timators with a better preservation of edges and with
more homogenous regions.

5 Conclusions
This paper presents a method to segment color images
using the IJK color space; it is based on the robust c-pro-
totypes algorithm, but adapted to use different M-esti-
mators. As could be seen in the quantitative results, the
performance of all variants presented offered better re-
sults than other algorithms proposed in the recent litera-
ture. On the other hand, the visual results depicted that
in the segmented images, there are detailed preservation
and homogenous regions in comparison with other
algorithms.
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