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Ilumination changes cause challenging problems for video surveillance algorithms, as objects of interest become masked by
changes in background appearance. It is desired for such algorithms to maintain a consistent perception of a scene regardless of
illumination variation. This work introduces a concept we call BigBackground, which is a model for representing large, persistent
scene features based on chromatic self-similarity. This model is found to comprise 50% to 90% of surveillance scenes. The large,
stable regions represented by the model are used as reference points for performing illumination compensation. The presented
compensation technique is demonstrated to decrease improper false-positive classification of background pixels by an average of
83% compared to the uncompensated case and by 25% to 43% compared to compensation techniques from the literature.

1. Introduction

Automated video surveillance has become increasingly
attractive for monitoring environments that are difficult
or dangerous for human operators to monitor. With the
proper algorithms, video processors can devote unwavering
attention to a scene and extract important information
about objects and events that the human visual system
is ill-equipped to detect. The first stages of most such
algorithms involve the separation of foreground (changing
regions of interest) from background (stationary regions or
uninteresting motion) by modeling the background, and
noting variations between the background model and the
current scene. A variety of change detection algorithms have
been proposed for this purpose [1-3]. Implementations of
background models vary, but all are generally statistical
representations of the persistence of image features that
an application defines as uninteresting. Pixels classified as
foreground may be analyzed further to recognize or track
objects, or identify events.

[lumination variation in a scene is a challenge to most
background models. As temporary cloud cover and artificial
lights change a scene’s illumination, background object pixels
fail to match their background model counterparts and are

falsely interpreted as foreground. Such a surge in the number
of foreground pixels often taxes downstream processes, as
object tracking or recognition routines must sift through
additional data. Salient features can be masked by surround-
ing background under new illumination conditions. Thus,
real-time performance becomes harder to maintain, and
analysis of the objects of interest becomes less accurate. The
conceptual motivation behind this work is easily seen in
Figure 1, which shows a scene before and after a significant
lighting change. It is desired for surveillance algorithms to
monitor such scenes, reliably observe foreground objects,
and filter out persistent background despite such lighting
changes.

In this paper, we present a computationally efficient
technique that quantifies and compensates for lighting vari-
ations. This technique uses the concept of BigBackground,
which identifies large, permanent background objects such
as roads and buildings. The resulting BigBackground model
is used as a calibration anchor to quickly, quantitatively
estimate the effects of lighting changes on stable regions
in the scene. These estimates are used to produce lighting
compensation factors that can be applied to estimate the
scene’s appearance under the original lighting condition
and to extend the useful life of the background model
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FiGure 1: Example of a scene before and after a lighting change.

without requiring complete reinitialization. The BigBack-
ground model is found to cover between 50% and 90%
of most scenes, while BigBackground pixels are found, on
average, to be 18% more stable than non-BigBackground
pixels. Applying an illumination compensation technique
based on BigBackground decreases average false positives by
83% compared to no corrective action and decreases average
false positives by 25% to 43% compared to competing
compensation techniques from the literature. During run-
time tests, the proposed algorithm performs among the
fastest techniques tested at 15 to 20 frames per second.

This paper is organized as follows. Section 2 describes
related work in the field of illumination compensation
and region modeling in video analysis. Section 3 introduces
the BigBackground model, and demonstrates its stability
characteristics. Section 4 describes four mathematical mod-
els for illumination compensation. Section 5 describes the
addition of a color clustering step to the BigBackground
algorithm and evaluates the effect of clustering on coverage
and stability. Section 6 compares our technique to several
illumination compensation techniques from the literature in
terms of accuracy and run-time, while Section 7 provides the
paper’s conclusion.

2. Related Work

Several techniques have been explored for dealing with
illumination changes in video analysis and image process-
ing. Some involve direct compensation to improve image
quality, while others simply recognize if two images are of
the same scene. Online and offline learning systems have
been employed. A wide range of models for representing
illumination change have been described with several degrees
of reliance on physical properties of light. The general goal
is to transform an image of a new lighting condition (I»)
to match the illumination condition observed in an earlier
image (I;) while preserving the features of L.

The majority of techniques used to resolve illumination
change problems rely on color information. Fundamental
work is presented by Gros [4] as several linear and nonlinear
transformation models are explored to account for illumina-
tion change. Static scenes are observed as illumination is var-
ied in a controlled way, and a least median square algorithm
chooses the best coefficient values for minimizing the error
between the original image and the image of the scene under
new illumination. For changes in illumination intensity (and
not in spectral distribution), the multiplication of the RGB
pixel vector by a single constant is shown to be sufficient
to reduce most of the error, although adding a translation
vector to the RGB vector (i.e., adding a scalar offset to each
color component) is also fairly effective. Spectral changes in
the light source require more complicated transformations to
significantly reduce error, such as multiplication of the RGB
vector by a full 3 X3 matrix. Also, for the spectral change case,
the addition of a translation vector decreases error better
than multiplication by a constant. Since a spectral shift in
the light source would cause each color channel to respond
differently, the translation vector better accounts for such a
change.

Experiments presented by Bales et al. [5] demonstrate
that the effects of illumination change have a significant
dependence on chromaticity. Color targets are subjected to
controlled illumination changes, and several mathematical
models are tested for how effectively they account for
illumination changes. All models improve in effectiveness
when tuned individually for each color. Furthermore, com-
pensation parameters that are optimized for one color are
found to remain effective when applied to other colors with
similar hue, and rapidly lose effectiveness when applied to
colors of dissimilar hue. These observations on the chromatic
dependency of illumination change response motivate the
approach to illumination compensation that we present here.

There are four general approaches to handling illu-
mination change: illumination invariance, physics-based
and photometric stereo modeling, local area statistics, and
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spatial correction. Illumination invariance methods attempt
to formulate algorithms such that the data they process
are not affected by illumination change. These algorithms
typically use edges and gradients [6, 7] or chromaticity [8—
10] instead of raw RGB pixel values. Edges are derived from
local features of a discrete approximation to the gradient
field, which measures intensity differences between adjacent
pixels. While edges are often present despite illumination
levels, illumination changes can still affect the apparent
strength of an edge, and a threshold mechanism must be
used to determine which edges are significant [6]. Several
color spaces are available that separate color from intensity
information, such as YCbCr and HSV. Chromaticity values
are calculated as the ratio of the intensity of a color channel
to the total intensity of the pixel. Chromaticity is the
simplest intensity-separating color space derived from RGB
values. Special color spaces alone are typically insufficient for
accounting for illumination change, because changes in light
source spectrum alter the colors in the scene. They are instead
used as components of more complex algorithms to provide
cues about color stability.

Other approaches to illumination compensation estimate
a scene’s surface properties to estimate response to changing
light conditions. Horn [11] describes in detail the concepts
of photometric stereo, in which a scene is decomposed into
irradiance and reflectance components. The irradiance map
is generally assumed to be a smooth function, and high-
frequency features are assumed to be caused by changes
in reflectance between objects. The primary drawback to
these techniques is the requirement of a controlled cali-
bration mechanism with well-defined relationships between
different illumination conditions. Calibration often must be
computed ahead of time offline, and the photometric stereo
process is computationally expensive. In [12], Hager and
Belhumeur assume a Lambertian scene and use at least three
images of a scene under linearly independent light source
directions, from which albedo and surface normal can be
computed. This set of basis images can be linearly combined
to depict the scene under a new illumination condition.
In [13], shadows are removed from images by computing
background images for the same scene over different periods
of time, and then decomposing these backgrounds into a
reflectance image and a set of illumination images. The
technique presented by Wu et al. [14] first estimates the
camera’s response function by observing the scene with
several different camera exposure times. Then online, two
or more images of the scene are captured using different
known exposure settings. Assuming the scene’s illumination
stays constant during capture, the images with different
exposures can be distilled into radiance maps using the
estimated camera response function, and then fused to
form an image that is less sensitive to lighting fluctuation.
A data-driven approach by Miller and Tieu [15] uses
a large set of images of a control color palette under
varying lighting conditions to learn color space response.
Principal component analysis is used to derive the most
statistically significant color transform pairs. This approach
does not model lighting transformation directly; instead,
the resulting color eigenflows are used to test if two images

are of the same scene under different illumination. This
seems to be a useful aid in scene recognition, but results
are not given for response to occlusion. A physics-based
reflection model is used by Makihara et al. [16] to estimate
color transformations starting with a single reference color.
Because it is difficult to automatically obtain reference colors
from unknown lighting conditions, the proposed method
uses human interaction to learn color transformations. Upon
finding a new color pair, the algorithm updates a color
transformation matrix and the algorithm repeats. If the
transformation does not successfully match an object in the
scene with a reference texture image of the object, human
intervention is required to facilitate the match, and the
transformation model is updated with the new color pair.

Statistics computed locally about individual pixels pro-
vide a computationally inexpensive approach to illumination
compensation. In [17], Young et al. propose two compensa-
tion models. In the first (called the first-order model), the
average intensity is calculated for a window centered about
each pixel in I; and L. The size of the window influences
how large and small features are compensated differently,
and generally ranges from 3 X 3 to 31 x 31 pixel squares. In
the second model (called the second-order model), both the
local averages and standard deviations are used. The first and
second-order models are given in (1) and (2) respectively.
Here, I} and I, represent the mean pixel value within the
window centered about (x,y) in the original image and in
the image being compensated. The standard deviations for
the same windows are given by o, and o,. This second-
order model is also proposed by Lu et al. [18] for block-
based illumination compensation in multiview video coding.
Instead of computing statistics for windows centered about
each pixel, the statistics are computed for each fixed-size
macroblock, and then applied to all of the pixels within that
macroblock to reduce computational cost

L(xy) = 212(%)’)) (1)

L(x,y) = (Ig(x,y) —12) (Z) + 1. (2)

A third method based on local statistics is proposed
by Kamikura et al. [19] with the intended application of
illumination compensation for video coding. The approach
can also be applied to compensating surveillance video, and
the motion estimation factors can be omitted. A pixelwise
affine transformation is used of the type shown in (3). The
gain and offset parameters (¢ and d, resp.) are chosen to
minimize mean square error, with the optimal solution given
by (4). The statistics used to calculate ¢ and d are given in
(5). Again, I; and I, are the originally illuminated image and
the currently illuminated image, respectively, while R is the
region over which the statistics are calculated and N is the
number of pixels in region R. A single (¢, d) pair for the
entire image is chosen by calculating pairs for all of the tiles in
the image, and choosing the pair that occurs most frequently.

An illumination change is modeled by observing changes
in the pixels of an image, but such changes can be caused



by either illumination or occluding objects. The drawback
to local area statistics techniques is the implicit assump-
tion that each pixel in I, should match its corresponding
pixel in I;. These methods make no distinction between
persistent background pixels or pixels belonging to occluding
objects, so the resulting compensations tend to drive all
pixels towards their appearance in image I;. Also, tiles
or regions that contain significantly different surfaces can
result in averages that fail to properly compensate either
surface

L(x,y) = ch(xy) +d, (3)
_N-S-P-Q
~ N-T-P2°
(4)
d T-Q-P-S
N-T-p2°
P= > L(xy),
X,YER
Q= z 12(%)’),
X,yER
(5)
S= 2 h(xy) hixy),
X,YER
T= > B(xy).
X, yER

The technique described by Suau et al. [20] also uses first-
and second-order statistics, but computes these statistics
over multiple tile resolutions and fuses the results. For each
tile resolution, the image is divided into equal numbers of
horizontal and vertical tiles, and the mean and variance
of each tile’s luminance channel are computed. Bilinear
interpolation expands these statistics into matrices with the
original image’s dimensions. The original image is then
mean-variance normalized toward a target illumination
average and standard deviation level, as given in (6), where
Y is the original luminance channel, Y’ is the compensated
luminance channel, L is the number of resolutions, M
is the bilinearly interpolated mean image for resolution
k, Vi is the bilinearly interpolated variance image for
resolution k, and o and oy are the target mean and
standard deviation levels, respectively. This approach is
presented as a preprocessing step and is used in conjunction
with a Mixture of Gaussians background model. Rather
than compensate a new image to more closely resemble
an image depicting the original illumination condition, all
images are normalized toward a preset ideal illumination
condition defined by yy and 0p. The multiresolution aspect
of the method reduces the technique’s sensitivity to tile
size selection, and it is stated that all of the resolutions
used must be larger than the objects of interest in the
observed scene. However, the extra passes required for each
resolution and the bilinear interpolation steps significantly
increase the computational complexity of the process.
Because only the intensity channel is compensated, there
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is not a mechanism for handling changes in light source
spectra

L
1 o
Y = Z[(Y—Mk)- ’ +M0}- (6)
L& 1+ Vi
Another illumination compensation method that

exploits local area statistics is given by Vijverberg et al. [21].
Rather than compensate the image directly, this technique
uses histogram analysis to tailor the thresholds used for
foreground/background classification. Laplacian, Gaussian,
and two-component Gaussian models are considered, and
the model is chosen that best describes the distribution of
background difference pixels (the difference between the
background image and the current image). The mean py and
standard deviations ox from the best-fitting model are used
to derive the classification threshold of (7), where k denotes
the component of a multimodal background model, A(x, y)
is the background difference, and Ty = MAX(Tmin, 1.50%).
This technique is intended for global illumination changes,
and, as described, does not include a mechanism for
handling partial changes

foreground if A(x, y) — px > Tx Vk,
F(x,y) = (7)

background else.

Spatial correction methods attempt to adjust localized
lighting effects to achieve a smoother, more balanced
reflectance function. Skin tone is a commonly exploited
reference color for balancing illumination across faces to
improve facial recognition [22-24]. Block-based histogram
equalization is used in [22] to improve contrast, followed
by the categorization of the type of illumination present
in the scene. Then an illumination compensation model
is applied that corresponds to that lighting condition.
Skin color distributions are studied in [23] under several
lighting conditions in the YCrCb color space and proposes
a correction to red component saturation to improve skin
color segmentation in strong light. In [24], skin color is
identified in faces in the first frame. This color is used to
track humans in the remaining video. The appearance of skin
under new illumination conditions is compensated for by the
application of a skin reflectance model, which consists of the
reflectance coefficient of skin as a function of incident light
wavelength.

The work in [13, 25, 26] focuses on correcting particular
types of illumination variation. Static glare removal is con-
sidered in [25]. Grayscale background images are computed
as the median of a window of 10 frames. Background
differencing is used between the current and previous
background models. The algorithm identifies regions which
have increased in brightness and are brighter than the
average grayscale value of the image. Pixels that meet these
requirements are classified as static glare. The technique
presented in [26] uses separate daytime and nighttime
background models of a scene. These images are segmented
based on illumination and motion, and the results are
fused to produce an illumination-enhanced night image in
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which the effects of artificial lights are reduced. Principal
component analysis is used in [13] to estimate the illu-
mination image and time-varying reflectance images of a
scene. The estimated components are then used to cancel out
illumination changes. The illumination image is computed
from the input image directly rather than from a background
model to avoid detecting transient shadows as movement.
These techniques address spatial intraframe illumination
variation rather than time-varying interframe variation. The
goal for intraframe correction is to modify regions within
a scene to make it appear more uniformly illuminated by
a distant, diffuse source, removing artifacts that result from
the locations and orientations of objects with respect to the
light source. Interframe compensations maintain constancy
during temporal lighting changes.

The concept of BB shares some philosophical similarities
with the “locales” framework introduced in [27], and with
the “stels” introduced in [28]. Locales provide a framework
for localizing features of interest in an image and consist of a
set of square tiles (called an envelope) and geometric features
such as centroid or mass which those tiles have in common.
These geometric features are measured in terms of the pixels
within a tile, and a tile is said to have a particular feature (and
is therefore a member of the corresponding locale’s envelope)
if a minimum density of the pixels within the tile have that
feature. Stels use an unsupervised, self-learning mechanism
to segment images according to regions of similar surface
normal, color or texture. By basing the segmentation based
on similarities within a single image, similar segmentation
results can be achieved in other images that have similar
features, but that were taken under different environmental
conditions or from different perspectives.

3. BigBackground

The influence of an illumination change on a scene is
complex. The color and intensity of the light source and
the position and distance of the light source relative to
the scene determine how the scene will respond. These
factors—combined with the orientations of objects within
the scene—determine the impact of shadows. A great deal of
information and computation is needed to model a physical
light source and predict how its evolution will alter the
appearance of a scene. However, if the effects of a light
change on reliable reference points can be observed, those
effects can be quantified and applied to nearby points to
estimate their appearance. This section describes a method
for selecting such reference points and for deriving an
illumination correction.

Within a scene, there are often large, stationary objects of
relatively homogeneous color. Buildings, roads, and tree lines
are examples. BigBackground (BB) is based on the premise
that these large background objects will be comprised of the
most common colors in a scene, and therefore a relatively
small color palette can be found which represents many of
the pixels in the image. Once the most common colors are
identified, a map can be generated that points each pixel
that matches a BB color to that color in the palette. Each

pixel that does match a color from that palette is said to
belong to that color’s region. Since each object is likely to
respond to illumination changes uniformly over their local
surfaces, it is possible to compare the colors of BB pixels
before and after a lighting change to measure the effect
on each region. BigBackground regions could be extracted
from every frame of a video stream, but this would risk
erroneous region extractions if large transient objects pass
through the scene, and would be computationally wasteful
because the background regions of interest are unlikely to
change often. To keep from incorporating transient objects
in the BB model, and to better distinguish between changing
background and occlusion, the BB algorithm is applied to
the output of a background model such as Approximated
Median, Mixture of Gaussians, or Multimodal Mean [29].
We choose Multimodal Mean for this study, and describe
the process in Section 3.1. By extracting BB regions from the
background model, it is possible to only recompute BB after
significant changes occur in the background.

We choose to use maximum component differences
(MCD), rather than sum of absolute differences (SAD), in
most of our pixel-comparison routines. The MCD is the
largest difference between two color components, as shown
in

MCD = MAX(abs(R1 — R2), abs(G1 — G2), abs(B1 — B2)).
(8)

The process for identifying BigBackground colors is as
follows. The image is separated into square tiles (Rsize X
Rsize), and a list of the colors present in each tile is generated
according to the following rule: if a pixel matches any of
the colors already on the list within a threshold, then that
pixel is averaged with that color; otherwise, it is appended
to the end of the list (see Figure2). Once an entire tile
has been evaluated in this way, colors that occur frequently
enough (more than Rth percent of the tile area) are added
to a global color list by the same mechanism. If a tile color
matches a global color within a threshold, it is ratiometrically
added to the global entry; otherwise it is appended to the
end. Once the entire image has been processed, the global
color list is sorted in descending order by the number of
pixels that matched each color. The colors are converted from
ratiometric to scalar representation. The image is rescanned
to determine how many pixels match each scalar color list
entry, as the average colors may have drifted since early
tiles were examined. The list is once again sorted in order
of descending pixel matches, and the top Cnum colors are
chosen as the BB color palette. An important feature of the
BB model is that while a color must have a minimum density
within a tile before it can be considered for inclusion into the
global list, connectedness is not a requirement. It is therefore
possible for surfaces composed of interleaved colors, such as
grass or brick, to be modeled by BB as well.

3.1. Stability Evaluation of BigBackground. A study is pre-
sented that evaluates the stability of BB regions compared
to the stability of the overall image. BB’s behavior under
different threshold values is also characterized. This study



global list = {}

for each tile T in image I
tile_list = {}
for each pixel Pin T
for each entry k in tile_list
if MCD(P, k.C) > MCDth
append P to end of tile_list
else
kC=kC+P
k.ent™*

for each entry m in tile_list
if (m.cnt/Rsize) > Rth
for each entry n in global_list
if MCD(m.C, n.C) > MCDth
append m to global_list
else
n.C=n.C+m.c

n.cnt = n.cnt + m.cnt
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// Convert to scalar //

for each entry n in global list
n.C = n.C/n.cnt
n.cnt = 0;

/I Rescan image //
for each pixel P in image
for each entry n in global_list
if MCD(P, n.C) < MCDth
n.cntt*

FIGURE 2: Process for identifying BigBackground. Color list entries such as m and n consist of an RGB triple (denoted C) and a count of the

number of times a color is observed (cnt).

uses results from BB and another background model known
as Multimodal Mean, which is introduced fully in [29], but
briefly described here.

Multimodal Mean models each pixel as a finite set of
possible average pixel values. If a pixel from the current
image matches within a threshold of one of its possible
averages, that average is updated with the value of the current
pixel. The model tracks how frequently each mode has
been observed, and how long it has been since each mode
was observed. The match count and average of each mode
are periodically decimated to prevent outdated information
from persisting too long after the scene has changed, and to
avoid integer overflow. Pixels from the current image that do
not match any of their Multimodal Mean cells are declared
foreground, and a new mode cell is created to track what
may be the start of a new background value. Typically, 3 or 4
modes are allowed per pixel.

Here we evaluate the relative temporal stabilities of
BB pixels and non-BB pixels. Illumination change effects
are considered in the next section. Six test videos with
no appreciable illumination changes are chosen to test BB
stability. Sample images from these videos are shown in
Figure 3. As part of the evaluation of BB’s stability, we
apply Multimodal Mean to a preamble period of each test
sequence. By the end of that period, Multimodal Mean
produces a stable background model and a predominance
image is created in which each pixel assumes its own
most frequently observed mean color. The BB algorithm
is applied to the predominance image to find the most
dominant, sufficiently clustered colors throughout the scene.
This results in a palette of common colors, and any pixel that
matches one of these colors within a threshold is mapped
to that entry in the color palette. This process is called
“branding”. Pixels which do not correspond to a BB color do
not belong to the BB model, and are assigned an index of
zero in the map. BB pixels receive an index from 1 to Cnum.

For each sequence, after we have computed the predominant
image and the BB model, we proceed to analyze the next
100 frames in the sequence. We compare each pixel in each
new frame with its corresponding pixel in the predominant
image and count how many BB and non-BB pixels continue
to match their original predominant pixel values within an
MCD threshold.

The evaluation of BB stability is done in two steps. First,
the number of BB pixels that match their predominance
values is compared with the number of non-BB pixels
that match their predominance values. Because both sets
of pixels are compared with their individual values in the
predominant image, and BB and non-BB serve only as
a spatial classification, this serves as an apples-to-apples
comparison that reveals if the subset of pixel positions
identified as BB is more likely to stay consistent than the
remaining pixels. In the next step, the BB pixels are compared
with their reduced color palette colors. The non-BB pixels
are still compared with their own predominance values.
Comparing these percentages reveals how well BB pixels
match when described by a small color palette.

Table 1 summarizes the average BB stability statistics
as observed in six video sequences. These averages are
computed over 45 trials for each sequence, in which we test
all combinations of the parameter choices for Cnum {5, 10,
15, 20, 25}, Rsize {8, 16, 32}, and Rth {10, 20, 30}. The
precise effects of these parameters are described in the next
section.

First examining the “NonBB % Match” and “BB %
Match” columns, we see that the pixels branded as BB match
their predominant image values significantly more often than
the unbranded pixels match their predominant values. The
“BB % Match (small palette)” column shows that when BB
pixels are compared with their entry in a reduced color
palette, the number of BB pixels that match drops by 20%
or less. The “% Branded” column shows what percentage of
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FIGURE 3: Samples from the image sequences used in the BigBackground stability experiments: (a) shady, (b) city, (c) biltmore, (d) yard, (e)
courtyard, and (f) sidewalk.
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TasLE 1: BigBackground Coverage and Stability in 6 scenes. These are the average results obtained from all combinations of the parameters
Cnum = {5, 10, 15, 20, 25}, Rsize = {8, 16, 32}, and Rth = {10, 20, 30}.

Seq % Branded Non-BB % Match BB % Match BB % Match (small palette)
Shady 49.4 30.2 72.2 59.2
City 23.7 87.9 94.7 76.6
Biltmore 31.3 82.8 92.2 72.3
Yard 46.1 35.0 62.7 48.1
Courtyard 48.6 88.7 95.3 71.0
Sidewalk 58.7 50.9 66.8 60.7

pixels is identified as BB in each scene. In summary, Table 1
shows that the subset of pixels identified as BB is more stable
on average than the remaining pixels. Using a small color
palette to represent BB pixels still captures a very large set of
the pixels that would have matched using their own custom
models.

3.2. Parameter Characterization of BigBackground. Next we
discuss BB’s responses to variations in its thresholds and
tuning parameters. The process of generating the BB model
depends on three major parameters: the number of colors
allowed in the color palette (Cnum), the size of the tiles
used to create regional color lists (Rsize), and the pixel
density required for a color to be preserved in the global
color list (Rth). There are two metrics we consider when
evaluating the importance of these parameters: BB coverage
(what percentage of a frame’s pixels are classified as BB)
and stability (what percentage of the BB pixels continue to
match their predominant pixel values). Figure 4 shows the
effect of different color palette sizes on BB coverage. Figure 5
shows the effect of different color palette sizes on the
number of branded pixel matches. The reduced color palette
is formed by sorting observed average colors by number
of matches and creating the palette from the Cnum most
popular colors. By increasing Cnum, additional colors from
the sorted list are included, allowing more pixels to match
a palette color. Also, the total coverage of BB increases. The
law of diminishing returns applies: since the most frequent
colors are chosen first, any new colors added to the palette
will not contribute as many pixels as those colors that have
come before. We see from Figures 4 and 5 that as the size of
the palette increases, the number of pixels identified as BB
also increases, but the percentage of those pixels that match
their model color over the course of the sequence tends to
decrease slightly. This indicates that the BB colors with the
fewest member pixels (and therefore the last to be added to
the palette) are somewhat less stable than the most popular
colors.

The parameters Rsize and Rth are observed to have very
small, erratic effects on BB coverage and stability. Rsize
is iterated through 8, 16, and 32, while Rth is iterated
through 10, 20, and 30. These parameters rarely influence
coverage or stability by more than two percent. The direction
of the change depends heavily on the scene; increasing
Rsize increases coverage in some sequences, while decreasing
coverage in others. This small, erratic response suggests
that Rsize and Rth can be chosen to maximize computing

Effect of Cnum on BB coverage
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FIGURE 4: Increasing the size of the color palette (Cnum) increases
the number of pixels belonging to BigBackground.

performance. For instance, increasing Rsize from 8 to 32
reduces the overhead of processing each tile, and increasing
Rth from 10 to 30 places more stringent requirements on
color density within each tile, thereby reducing the number
of colors to be sorted and searched through in the global list.
The main tradeoff to consider when tuning BB parameters is
BB coverage versus BB stability. Additional pixels identified
as BB tend to be less stable than those pixels previously
identified. Color palette sizes (Cnum) of 15 to 20 are gen-
erally observed to capture the most significant background
structures without capturing unnecessarily small features.
Examples of predominance images and their BB-produced
region maps are shown in Figure 6. False colors are used to
highlight the separation of BB regions. Black pixels do not
map to a BB color.

4. BigBackground as an Illumination Anchor

The results in the preceding section show that BB can be
relied upon as a relatively stable set of pixels. We propose
that this characteristic can be used as a point of reference for
calculating illumination changes. As illumination changes in
a scene, the new values of BB pixels can be compared with
their values from the BB color palette, and the average effect
on each of those color regions can be quantified.

The general approach is to detect prevalent changes in
the BB regions of an image, identify which changes are due
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Effect of Cnum on BB stability
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Figure 5: The additional pixels incorporated into the BigBack-
ground model by increasing Cnum match slightly less often.

to changes in illumination, and from that data, formulate a
mathematical operation that will transform pixels from the
current image into something closer to what was observed in
images before the lighting change.

The most computationally efficient means of observing
changes in a BB region is to find the region’s new average
pixel value. A foreground object that obscures part of a
background region would tend to pull the region’s average
color away from the true background color. Therefore, one of
the conditions in (9) must be met before a BB pixel is allowed
to contribute to its region’s new average color, where H, and
Sy denote the pixel’s Hue and Saturation, respectively. The
subscript x can take on values of 1 to denote a pixel in the
original lighting condition or 2 to denote a pixel in the new
lighting condition being compensated

S1 >12% AND S, > 12% AND |H, — H,| < 8%,
S1 >12% AND S, > 12% AND |S; — S;| < 8%, 9)
S1<12% AND S, < 12%.

The thresholds used in these rules were determined
empirically, and are constant for all sequences. If only hue
comparisons are made without the saturation condition,
many false mismatches were encountered in dark and gray-
colored regions, such as asphalt and concrete. If one of
these conditions is met, there is a reasonable probability
that the pixel indeed represents the same BB region, but is
being observed under different illumination. In that case,
the pixel’s RGB values contribute to the region’s new average
color. If the hues or saturations are too different, the pixel
is considered likely to be a temporary occluding object
and does not contribute to the region’s average color. To
summarize, all of the pixels that belong to the same BB region
and that satisfy one of the rules in (9) are averaged together,
thereby computing the BB region’s new average color under
a potentially new lighting condition.

Knowing each BigBackground region’s original appear-
ance (under the original lighting condition) and new color

(under a new lighting condition) forms the basis for
our approach to illumination compensation. For each BB
region, we independently compute the parameters for a
compensation model. We next present the sequences used
for evaluation, address the issue of local lighting effects, and
evaluate four choices for compensation models.

4.1. Video Test Set. 'Ten image sequences featuring significant
occlusion and illumination change were captured to evaluate
the algorithms discussed. Sequences were captured using
off-the-shelf USB webcameras at 30 frames per second
with 640 x 480 pixel resolution. Table 2 describes the
important features of the test sequences used. Samples of
the video sequences are shown in Figures 9 and 10. The
first column shows the scene before a lighting change, the
second column shows the scene after a lighting change, and
the third column shows the desired ground truth images
of ideal foreground/background segmentation. The ground
truth images are generated by hand, where white pixels
represent ideal foreground and black pixels represent ideal
background.

4.2. Local lllumination Changes. Some video scenes feature
global lighting changes, in which the entire visible scene
responds to new illumination fairly evenly. However, in many
cases, rolling cloud cover or small lamps being turned off and
on result in local lighting changes. Sources of illumination
might vary with intensity across a scene, resulting in different
lighting transformations from one side of the scene to
the other. Different objects with similar surfaces may be
oriented differently with respect to the light source, thereby
responding differently to the same lighting change. To better
accommodate these cases, the image is segmented into square
tiles. New region averages are then computed for each BB
region that appears within each tile. Each tile is treated
independently, so the transformations within each tile are
the best fit for the local lighting conditions. As observed in
the Relative Operating Characteristic (ROC) plot in Figure 7,
larger tile sizes (up to the limit of treating the entire image
as one large tile) tend to lead to higher false positive rates,
incidentally increasing the true positive rates as more pixels
are classified as foreground. Data points corresponding to
smaller tile sizes tend toward the left axis of the plot. This
effect is more visible in the sample images of Figure 8.
The Ford2 sequence features a sharp partial illumination
change in the back half of the image. Global compensation
without tiling results in large portions of false foreground.
The Techsquarel sequence features an illumination change
that is more spatially uniform, so while tiling does improve
quality in some areas, the effect is less pronounced. Using
a very small tile size can result in aperture artifacts: such
a small portion of the image is examined at one time that
even occluding objects are driven into the background. For
the scene types tested here, we have found that a tile size
of 32 pixels per side responds well to local effects without
masking occlusions irrecoverably. The optimal value will
depend somewhat on the relative sizes of the objects of
interest.
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FIGURE 6: (a) Samples of multimodal mean predominant images from evaluation sequences. (b) False-color BigBackground maps. Each
color represents a different BB region. For these examples, Cnum = 15, Rth = 20, and Rsize = 16.

TaBLE 2: Properties of test sequences with illumination change.

Sequence Lighting change Foreground objects Background behavior
Backyard1l Large Distant vehicles Rural, yard, treeline
Backyard2 Large Distant vehicles Rural, yard, treeline
Fordl Partial, large Mid-range vehicles Urban, buildings
Ford2 Partial, small Mid-range vehicles Urban, buildings
RecCenter Very small Mid-range pedestrian Indoors, desaturated
TechSquarel Small Mid-range vehicles Urban, buildings
TechSquare2 Small Mid-range vehicles Urban, buildings
Roadside Moderate Close vehicles Rural, field, treeline
Bank Large Close vehicles Building, parking lot
ParkingLot Moderate Distant vehicles Parking lot, desaturated
BRI R X 4.3. MMlumination Model Selection. As described in [4], sev-
x eral transformation models are available for dealing with
_ XK L illumination change. We determine experimentally which
g A model is most effective for exploiting the BB model to
Q“é perform illumination compensation. In this investigation,
g four transformation models are explored for accuracy and
Z consistency. These models are chosen as the best balance
;, between accuracy and computational cost. More complex
= models tested in [4, 30] are able to account for the illumi-
R nation changes of more pixels, but the increase in accuracy
" ' ' ' ' is small compared to the extra number of operations
0 20 40 60 30 100 required. Of the four methods we examine here, the first
False positive rate (%) method treats illumination changes purely as translation
operations, and computes the difference between the current
M x 80 BB region average and the original BB region color. The
= 16 * Full . . .
s 3 second method calculates the ratio of the original region

FiGgure 7: An ROC plot showing the effects of different tile sizes (8,
16, 32, and 80 pixels per side) on foreground/background classifi-
cation accuracy. The data points shown were computed from ten
video sequences using classification thresholds of 5, 7, 10, and 15.

color to the new average color. This treats illumination
change as a gain operation and applies a multiplier to
member pixels of a given BB region. The third method,
like the first, is translation-based, but the original colors
and the averages are first converted to HSI space where
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FIGURE 8: Sample images from the Ford2 (a) and TechSquarel (b) test sequences, illustrating classification results when the illumination
compensation tile size is 8 pixels per side (top), 32 pixels per side (middle), and full image (bottom). For these sequences, Cnum = 15,

Rsize = 16, Rth = 10, and MCDth = 7.

the differences are calculated. Correcting pixels in a new
image thus requires converting that pixel to HSI space,
adding the corresponding region’s average HSI differences,
and converting back to RGB. The fourth method is similar
in form to the second, but again operates in HSI space.
Pixels and region averages are converted to HSI, the ratios
between the new region averages and the original region
averages are calculated and applied to each pixel and the
result is converted back to RGB space. The derivations of
the models’ parameters from BB are summarized in Table 3,
where the subscript i denotes the BigBackground region
under consideration; R, G, and B denote the color channels
of the BB average color regions; and «, 5, and y denote
the compensation parameters for each color channel. The
subsequent application of these models to pixels belonging
to BB is shown in Table 4, where the subscript i again
denotes the BB region to which the pixel and compensation
parameters belong. Non-BB pixels are compensated with the
parameters corresponding to the BB region with the hue that
best matches the pixel.

TasLE 3: Computing illumination compensation models parame-
ters.

;i = Ri,orig = Rinew
RGB Translation Bi = Giorig — Ginew
¥i = Biorig = Binew
;= Ri,orig/ Rinew
RGB Gain Bi = Giorig/ Ginew
¥i = Biorig/Binew
;= Hi,orig — Hinew
HSI Translation Bi = Siorig — Sinew
Vi = Iiorig — Linew
o = Hi,orig/ Hinew
HSI Gain Bi = Siorig/Sinew
Vi = Liorig/Linew

The four compensation models are evaluated in terms of
how well image I, is segmented into foreground and back-
ground after the compensation is applied. A representative
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FIGURE 9: Left to right: Initial image, postlighting change image, and hand-marked ground-truth image from the sequences used to evaluate
illumination compensation methods. Top to bottom: Backyard1, Backyard2, Ford1, Ford2, and RecCenter.

image that contains a significant amount of foreground
occlusion is chosen from each sequence, and a corresponding
ground truth image is generated by hand-labeling the proper
classification of each pixel. The automatically segmented

compensated image is compared with the ground truth.
Pixels that are labeled as background in the ground truth
image and as foreground in the segmented image are counted
as false positives. Pixels that are labeled as foreground
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FIGURE 10: Left to right: Initial image, postlighting change image, and hand-marked ground-truth image from the sequences used to evaluate
illumination compensation methods. Top to bottom: TechSquarel, TechSquare2, Roadside, Bank, and ParkingLot.

in the ground truth image and as background in the
segmented image are counted as false negatives. These are
converted to percentages by dividing the false positives by
the true number of background pixels, and dividing the

false negatives by the true number of foreground pixels. An
ROC curve is presented in Figure 11 which shows the false
positive rate on the x-axis, and the true positive rate on the
y-axis. To produce the data points for this curve, each of
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TaBLE 4: Application of illumination compensation models to
pixels belonging to BB.

RGB Translation P; = (a; + R, i + G, y; + B) = Prgs + Tras
RGB Gain P; = (iR, 3;G, y;B) = D * Prgp

HSI Translation Pl = (a;i+H,Bi+S,y; +I) = Pusi + Tusi
HSI Gain P! = (e;H,[:S, y:I) = D * Pyg

the compensation models is tested using all combinations of
tile sizes {8, 16, 32, 80} and maximum component difference
thresholds {5, 7, 10, 15}. Of the four models, the RGB
Translation model most consistently yields the lowest false
positive rates, which are the artifacts that must be minimized
during illumination changes. The behavior of each model
can be observed in some sample scenes in Figure 12. False
positive and false negative rates are shown in Figures 13 and
14, respectively; these plots show the relative performance
of the models for parameters set to Cnum = 15, Rsize =
32, Rth = 20, MCDth = 7, and tile size = 16. In the
Ford2 and Roadside sequences in particular, one can observe
how the gain and HSI models leave considerably more
foreground noise than the RGB Translation model. Due to
the averaged nature of how compensations are computed
from the BB color regions, the multiplicative models tend
to overcompensate many pixels during significant lighting
changes. Small variations in the pixels being transformed are
amplified outside the range of the classification threshold.
Also, compensations performed in the HSI color space
occasionally suffer from hue and saturation artifacts and
produce exaggerated colorizations of some tiles that could
cause problems in downstream processes. Therefore, RGB
Translation is used in the remaining experiments.

5. Chromatic Clustering in BigBackground

After analyzing the distribution of colors in the BB palette,
it is observed that several palette entries are occupied by
colors that a human observer would call the same. As a result,
several significant regions in the scene are left out of the
model because subtle color variations of a few large surfaces
occupy most of the color palette entries. It is desirable to
obtain a chromatically diverse color palette for two reasons.
First, a diverse palette allows us to observe the effects of a
lighting change on a wider range of surface types. Second,
a diverse palette is able to cover more of the scene with
the BB model. An experiment is conducted to justify this
assumption using the image sequences with illumination
change. The sum of absolute difference is computed between
every BB color pair. The sum of absolute difference is
also computed between every pair of RGB Translation
illumination compensation factors. Thus we measure the
separation of the colors in the BB palette and the separation
between the illumination compensations of those colors and
put the data in an XY scatter plot to observe any correlation
(Figure 15).

It is apparent from Figure 15 that palette colors that are
very close together have very similar compensation factors.
A strong linear relationship can be seen between color
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FiGgure 11: ROC plot for four mathematical models for illumination
compensation. The data points shown were computed from ten test
sequences, sweeping MCDth over {5, 7, 10, 15} and tile size over
{8, 16, 32, 80}. The RGB Translation model stays more consistently
concentrated in the low false positive range, which are the errors we
are trying to minimize during illumination changes.

separation and correction separation for each sequence. In
order to improve color palette diversity, the following color
clustering step is added to the BB color-finding algorithm:
after producing the scalar color list, we examine all of the
colors in the list and organize colors that match within
a clustering maximum component difference (CIMCD) of
each other into a single linked list. The color palette then
consists of an array of linked lists, rather than an array
of individual colors. The parameter CIMCD represents the
maximum color distance allowed between similar colors. If a
pixel matches any one of the colors in a list, it is branded with
the index of that list instead of the index of a specific color.
The weighted average of each linked list of colors is used to
represent the list for calculating illumination compensation.

We repeat the previous experiments to observe the effect
of clustering on palette diversity and BB coverage. Figure 16
shows the correlation between average color separation
and compensation separation. Some linear trends are still
present, but the entire mass of data points has shifted
significantly up and to the right. This signifies that there is
now a greater difference between palette entries and their
respective compensations, and that the palette has been
chromatically diversified.

We repeat the stability experiment to observe the effect
of clustering on BB coverage and relative stability. We also
test the effects of parameters Rsize and Rth on the algorithm
with clustering. Table 5 shows that again, the pixels branded
as BB match significantly more often than the remaining
pixels. Compared with the values in Table 1, we see that the
clustering process slightly decreases stability. However, the
BB model covers significantly greater image area—generally
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FIGURE 12: Sample images of foreground/background classification for four illumination compensation models. Left to right: Ford2,
Techsquare2, and Roadside sequences. Top to bottom: RGB Translation, RGB Gain, HSI Translation, and HSI Gain. These samples were

processed with Cnum = 15, Rsize = 16, Rth = 10, MCDth = 7.
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Figure 13: Comparison of four compensation models in terms
of false positives/true negatives. The RGB translation technique
consistently achieves the lowest false positive rate.
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Correlation between color separation and correction
separation (without clustering)

SAD between corrections
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% Ford2 — Bank
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Figure 15: Correlation between color separation and correction
separation before the clustering step is introduced. Pairs of colors
that have a small sum of absolute difference tend to have a small
SAD between their illumination corrections as well, indicating that
the pair could possibly be treated as a single color for compensation
purposes.

Correlation between color separation and correction
separation (without clustering)
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TABLE 5: Stability for BB with color clustering.
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FiIGUre 16: Correlation between color group separation and

correction separation after the clustering step is introduced. Far
fewer color pairs have SADs less than 100.

increasing by 20% or more. This increase in coverage more
than makes up for the stability decline, and indicates that a
greater number of pixels are being matched with nearly the
same reliability. A larger percentage of BB pixels also match
within the reduced color palette.

Seq % Branded Non-BB % Match BB % Match
Shady 68.9 26.6 62.6
City 52.8 86.1 92.3
Biltmore 64.5 78.7 89.1
Yard 65.4 28.2 57.9
Courtyard 76.4 84.6 93.9
Sidewalk 81.8 429 62.8
Effect of Cnum on BB coverage (with clustering)
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FiGure 17: The effect of increasing color palette size on BB coverage
after similar colors have been clustered into groups. The clustering
step succeeds in increasing coverage between 20% and 40% over the
nonclustering algorithm for the test sequences.

Next, we examine the effects of adjusting the BB param-
eters Cnum, Rsize, Rth, and the new clustering maximum
component difference threshold (CIMCD), on BB coverage
and stability. Figures 17 and 18 show the results for varying
Cnum. The results shown are the averages for each sequence
over all combinations of Rth, Rsize, and CIMCD. Again, we
observe a law of diminishing returns in coverage, and slight
decreases in the proportion of BB pixels that consistently
match. Because colors are added in order of popularity,
subsequent palette entries contribute fewer pixels and are less
stable than preceding entries.

While Rsize and Rth have a negligible effect when no
clustering is used, their effects increase in magnitude as
the CIMCD threshold is increased. The plots in Figures 19
and 20 show the performance of different Rth and Rsize
combinations for different CIMCD values and a constant
Cnum of 20 for the representative Biltmore video. The Rth
parameter takes on values of 10, 20, and 30, while Rsize takes
on values of 8, 16, and 32. Increasing the CIMCD shifts the
overall coverage percentage upward, and the match percent-
age downward. However, the curves for different CIMCD
values are not parallel, and demonstrate that as CIMCD
increases, the effects of changing Rth and Rsize become more
dramatic. Changes in Rsize have the most dramatic impact.
Small Rsize values—which correspond to small tile sizes
during color segmentation—Ilead to the greatest BB coverage.
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FiGure 18: The effect of increasing the size of the color palette on
BB pixel stability. A general decrease in stability is observed when
compared to the preclustering stability measurements (in Figure 5),
but the sharp increase in overall coverage more than compensates
for the stability decline.
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FIGURE 19: BigBackground coverage of the Biltmore sequence as
a function of CIMCD, Rth, and Rsize.

The Rth parameter follows a similar relationship but is less
pronounced. Small Rth and Rsize values result in a larger
number of colors in the global list. A small Rsize means that
the average colors found during the initial color search stage
are more localized, and are not competing with other slightly
different colors for inclusion into the global list as they would
if they were in the same tile. This process allows similar
colors to be clustered into color groups after they have been
identified and added to the global list. Examples of the effects
of the clustering step on BB region coverage and association
are shown in Figure 21. The sample images show the false-
color BB maps from Figure 6 on top (in which no clustering
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Ficure 20: BigBackground stability in the Biltmore sequence as
a function of CIMCD, Rth and Rsize.

was used) and new false-color maps produced by BB with
clustering on bottom. These images reveal the increase in BB
coverage (as additional pixels are mapped to BB), as well as
the improvement in perception (as similar surfaces that were
previously regarded as separate regions are now associated
with the same region).

6. Comparison to Other Methods

In this section, the proposed BB-based illumination compen-
sation method is compared to the illumination compensa-
tion techniques described in [17-20] in terms of accuracy
and execution time. These techniques are chosen for com-
parison because they are of similar structure and complexity
to ours. They do not require extensive calibration, do
not rely on assumptions about the scene environment or
light sources, and are not designed around models for
compensating specific targets (such as faces). Data used
for compensation is extracted directly from pixels near the
regions of interest.

6.1. Accuracy Comparison. In this experiment, the settings
shown in Table 6 are used for the BB process. To make results
more comparable, the competing methods are coded to
calculate correction statistics for each fixed tile, and to apply
those corrections to all pixels in the tile rather than recalcu-
lating statistics for a new window centered about each pixel.
True and false positive rates are used for method evaluation,
and are shown succinctly in the ROC plots of Figure 22.
Data points on the ROC plot are generated by applying the
five described compensation methods to 10 video sequences,
and sweeping maximum component difference thresholds
and tile sizes through several combinations (MCD = 5, 7,
10, 15; tile size = 8, 16, 32, 80). Figure 22(a) compares
the proposed method with the first-order and second-order
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(b)

FIGURE 21: (a) False color BigBackground maps without extra clustering step. (b) False-color BigBackground maps using clustering step to
improve coverage. Each color represents a different BB region. For these samples, Cnum = 15, CIMCD = 15, Rth = 20, and Rsize = 16.
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F1Gure 22: ROC plots for five illumination compensation techniques. Data was generated by processing ten test sequences and sweeping
MCDth over {5, 7, 10, 15} and tile size {8, 16, 32, 80}. For the Multiresolution technique, the following four resolution sets were tested: {2,

4, 8,16}, {4, 8, 16, 32}, {8, 16, 32, 80}, and {2, 4, 8, 16, 32, 80}.

techniques. Figure 22(b) compares the proposed method
with the MinMSE and multiresolution techniques.

For the BB-based method and the 1st Order, 2nd
Order, and MinMSE methods, foreground/background clas-
sification is performed using the maximum component

difference of the three color channels for each pixel. The
multiresolution compensation method [20] is implemented
here using the YCbCr color space. Because it does not
compensate for changes in light source spectrum, full-
color pixel comparisons lead to very high false positive
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FIGURE 23: Segmentation results for illumination compensated scenes. Left to right: Backyard2, Ford1, TechSquare2, and Roadside sequences.
Top to bottom: Original scene, Ground Truth, BB-based, MinMSE, First-order, Second-order, and Multiresolution compensation methods.
For these examples, the parameters used were MCD = 7, illumination tile size = 32, Rth = 10, Rsize = 8.

rates. Therefore, foreground/background classification is
performed using only the intensity of each pixel (i.e., (R +
G + B)/3). The values for yy and oy were set to 128 and 40,
respectively, as suggested by the authors.

When no compensation is applied, the false positive
rate is often greater than 90%. The BB-based compensation
technique results in less than 20% false positives, and
performs especially well compared to the other methods

during extreme lighting changes. We have found that by
decreasing Rsize to 8 and Rth to 10 to improve BB coverage,
our false positive rate is kept below 10%. However, this
generally comes at the expense of a 10% to 20% increase
in false negatives. Sequences RecCenter, TechSquarel, and
TechSquare2 feature slight changes in intensity, resulting in
fewer false positives for all five methods. Figure 23 shows
examples of the foreground/background segmentation
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Runtimes of four compensation methods
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FIGURE 24: Runtime performance (in frames per second) of five
illumination compensation techniques.

TaBLE 6: Settings used when comparing BB compensation to other
methods. These parameters do not affect the other compensation
methods.

Cnum 15
CIMCD 15
Rth 20
Rsize 32

achieved using each compensation method. The most useful
conclusions are drawn from the combination of Figures 22
and 23. While the local area statistic approaches presented
in [17, 18] typically have high true positive rates, the
unpredictable number of remaining false positives presents
a challenge to subsequent processes. The techniques from
[19, 20] have wide variability in both false positives and true
positives. For the purposes of illumination compensation,
where widespread false positives cause the most difficulty,
the consistently low rates of false positives produced
by the BB-based technique are a more useful operating
range on the ROC curve. While fewer true positives are
produced, enough remain that in the absence of distracting
false positives, objects of interest can be found more
easily.

6.2. Execution Time Comparison. Each compensation
method was coded in the C programming language, and
executed on a PC running Ubuntu 10.04 and equipped with
a 3.4 GHz Pentium D and 1 GB of RAM. The same coding
style was used for each algorithm, so while additional
optimizations may be possible to improve absolute
frame rate, this serves as a useful comparison for relative
performance. Each trial—consisting of a combination of
test sequence, compensation method, and tile size—is run 3
times; the standard deviation for each trial set is measured
to be less than 2 ms. Data collection and file I/O processes
are not included in these measurements. The average
runtimes (in frames per second) are shown in Figure 24
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for each sequence and method. Each runtime represents
the average of nine trials: three trials for each of three tile
sizes (8, 16, 32). The remaining parameters during this
experiment were set to Rth = 20, Rsize = 16, and Cnum = 15.

The execution time of the proposed method is on par
with—and occasionally about 10% faster than—that of
the first-order method. The proposed method consistently
runs at more than twice the frame rate achieved by the
second-order and Min MSE methods. The multiresolution
method performs two passes through an image and bilinearly
interpolates two statistics matrices per resolution, generally
requiring 2-3 seconds per frame. All of the compared
methods require considerable use of floating point calcu-
lations, while the BB-based method primarily uses integer
arithmetic. Because the same number of pixels is processed
regardless of tile size, larger tile sizes (and therefore fewer
tiles) reduce the overhead incurred by processing each new
tile. Finally, the BB-based compensation method requires
slightly more time to execute for scenes with lower BB
coverage, since non-BB pixels require a search of the color
palette to find the closest color match.

7. Conclusions

This paper has introduced BigBackground, a stable feature
identifier based on chromatic similarity, and has presented
an illumination compensation method based on the sta-
ble regions identified by BigBackground. BigBackground
employs the hypothesis that large, stable regions can
be identified by the most popular colors in the scene.
Experiments show that pixels identified as BigBackground
are more stable than non-BigBackground pixels, and that
the process of clustering similar colors across image tiles
improves the efficiency of the color palette and allows
the model to account for large percentages of scenes. The
BigBackground model is found to cover between 50%
and 90% of most scenes, while BigBackground pixels are
found, on average, to be 18% more stable than non-
BigBackground pixels. Additional experiments show that the
BigBackground model is effective at quantifying illumination
changes by using simple RGB translation to account for those
changes. Multiple cameras, multiple points of view, complex
physical models, and special training sets are not used. False
positives—the primary complications to change detection
caused by illumination changes—are greatly reduced in
foreground/background segmentation compared to com-
peting algorithms. Applying an illumination compensation
technique based on BigBackground decreases average false
positives by 83% compared to no corrective action, and
decreases average false positives by 25% to 43% compared to
other compensation techniques from the literature. Result-
ing foreground/background images posses less clutter and
feature better isolated and well-defined objects of interest.
In addition, the execution time of the proposed technique
is measured to be similar to a simple first-order, tile-
oriented compensation approach, and is less than half
of the time spent by second-order and multiresolution
techniques.
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