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The work presented in this paper deals with the performance analysis of the whole 3D reconstruction process of imaged objects,
specifically of the set of geometric primitives describing their outline and extracted from a pair of images knowing their associated
camera models. The proposed analysis focuses on error estimation for the edge detection process, the starting step for the whole
reconstruction procedure. The fitting parameters describing the geometric features composing the workpiece to be evaluated are
used as quality measures to determine error bounds and finally to estimate the edge detection errors. These error estimates are then
propagated up to the final 3D reconstruction step. The suggested error analysis procedure for stereovision-based reconstruction
tasks further allows evaluating the quality of the 3D reconstruction. The resulting final error estimates enable lastly to state if the
reconstruction results fulfill a priori defined criteria, for example, fulfill dimensional constraints including tolerance information,
for vision-based quality control applications for example.

1. Introduction

Quality control is the process applied to ensure a given
level of quality for a product, especially in the automotive
industry sector. Implementation of such a control at all
stages of a production, from design to manufacturing, is
unavoidable to guarantee a high level of quality, requiring
often high measurement accuracy in order to avoid both loss
of manufacturing time and material. Thus, when making
use of vision-based approaches, it is necessary to develop
fully automated tools for the accurate computation of 3D
descriptions of the object of interest out of the acquired
image contents. The latter can then be compared, taking
tolerance information into account, with either ground truth
or the CAD model of the object under investigation, in
order to evaluate quantitatively its quality. An autonomous
cognitive vision system is currently being developed for
the optimal quantitative 3D reconstruction of manufac-
tured parts, based on a priori planning of the task. As a
result, the system is built around a cognitive intelligent
sensory system using so-called situation graph trees as

a planning/control tool [1]. The planning system has been
successfully applied to structured light and stereovision-
based 3D reconstruction tasks [2–4], with the aim to
favor the development of an automated quality control
system for manufactured parts evaluating quantitatively their
geometry. This requires the coordination of a set of com-
plex processes performing sequentially data acquisition, its
quantitative evaluation (i.e., extraction of geometric features
and their 3D reconstruction), and the comparison with a
reference model (e.g., CAD model of the object) in order
to evaluate quantitatively the object, including means allow-
ing adjusting/correcting online either data acquisition or
processing.

Stereovision is a direct approach for obtaining three-
dimensional information using two images acquired from
two different points of view. The approach, when effi-
ciently implemented, enables to achieve reconstruction and
consequently dimensional measurements, with rather high
accuracy. Thus, the method is widely used in many appli-
cations, ranging from 3D object recognition to machine
inspection. In this last case, the outline of the object can
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be determined, based on the set of geometric contour-
based features defining this outline. As a result, such a
contour-based approach provides good (i.e., reasonable)
reconstruction quality at low cost. However, in order to
assess the quality of the results, specifically when high
levels of accuracy are required, it is mandatory to carry
out a thorough analysis of the errors occurring in the
system. More precisely, presence of noise in the acquired
data affects the accuracy of the subsequent image processing
steps and, thus, of the whole reconstruction process. 3D
reconstruction errors depend on the quality of the acquired
images (resulting from the environment; i.e., the specific
acquisition conditions used) as well as on their processing
(e.g., segmentation, feature extraction, matching, and recon-
struction).

The work presented in this paper deals with the per-
formance analysis of the 3D reconstruction process of a set
of geometric primitives (in our case, lines and arcs of or
full ellipses) from a pair of images knowing their associated
camera models. The suggested analysis focuses firstly on
the error estimation affecting the edge detection process,
the starting processing step for the whole reconstruction
procedure. Using fitting techniques in order to describe the
geometric elements and assuming that the noise is indepen-
dent and uniformly distributed in the images, error bounds
are established for each geometric feature that composes the
outline of the object to be evaluated. The error bounds are
then propagated through the following processing steps, up
to the final 3D reconstruction step. Specifically devised here
to enable error analysis for stereovision-based reconstruction
tasks, it can be straightforwardly extended to other types
of image-based features. This will then help to evaluate
the quality of the 3D reconstructions obtained applying
various imaging techniques, as illustrated in this paper by
stereovision-based results. Lastly, the resulting final recon-
struction error estimates enable to state if the reconstruction
results fulfills a priori defined criteria including tolerance
information (e.g., dimensions with their corresponding
tolerances).

2. RelatedWork

A literature survey shows that over the last years some
efforts have been devoted to error analysis in stereovision-
based computer vision systems, see, for example, [5–12].
As an illustrative example, using a stereoscopic camera
setup, Blostein and Huang in [5], have investigated the
accuracy in obtaining 3D positional information based
on triangulation techniques using point correspondences.
In particular, they have been able to derive closed form
expressions for the probability distributions of the position
error along each direction (horizontal, vertical, and range)
of the coordinate system associated with the stereo rig.
With the same aim, a study of various types of error and
of their effect on 3D reconstruction results obtained using
a structured light technique has been presented by Yang
and Wang in [6]. In their work, expressions have been
derived for the errors observed in the 3D surface posi-
tion, orientation, and curvature measurements. Similarly,

Ramakrishna and Vaidvanathan [7] have proposed a new
approach for estimating tight bounds on measurement
errors, considering, as a starting point, the inaccuracies
observed during calibration and the triangulation recon-
struction step. Further, Balasuramanian et al. describe in [9]
an analysis of the effect of noise (assumed to be independent
and uniformly distributed) and of the geometry of the
imaging setup on the reconstruction error for a straight
line. Their analysis, however, relies mainly on experimental
results based on simulation studies. Also, Rivera-Rios et al.
[10] have analyzed the error when trying to evaluate
dimensionally line entities, the errors being assumed to
be mostly due to localization errors in the image planes
of the stereo setup. Consequently, in order to determine
optimal camera poses, a nonlinear optimization problem
has been formulated, that allows to minimize the total MSE
(Mean Square Error) for the line to be measured, while
satisfying sensor related constraints. Lastly, the accuracy of
3D reconstruction results has been evaluated, based on a
comparison with ground truth, in contributions presented
by Park and Subbarao [11] and Albouy et al. [12]. More
recently, Jianxi et al. [13] have presented an error analysis
approach for 3D reconstruction problems taking only into
account the accuracy of the camera calibration parame-
ters. They note that the largest error appears in the z-
direction, when computing 3D coordinates. Furthermore,
their contribution shows that the 3D error is smaller, if one
uses more calibration points (i.e., the calibration is more
accurate).

In our case, the error analysis focuses on the estimation
of errors bounds for the results outputted by the edge
detection process, which is considered to be the starting
step for the whole reconstruction procedure (and which
includes indirectly the effect of the error sources related to
the acquisition system). This analysis is thus of importance
for evaluating the quality of the final 3D reconstruc-
tion result, as it helps to estimate the associated error
bounds.

3. Stereovision-Based Reconstruction Setup

In our case, the stereovision sensor consists of a pair of
cameras mounted on a metallic rig, linked to their image
acquisition boards inserted in the control/processing com-
puter. 3D reconstruction involves acquiring and processing
two (left and right) images of the scene with different
viewpoints using a pair of sensors (in our case, gray
scale CCD cameras; with image size 640 × 480 pixels).
The image processing software performs 3D reconstruction
of previously extracted contour data. Firstly, each camera
is carefully calibrated off line. For the two sensors, the
calibration is performed with respect to a unique world
coordinate system acting as reference coordinate system.
As a result, the various sets of 3D points, obtained with
the two sensors, are expressed in a common coordinate
system in order to facilitate data fusion in subsequent
processing steps. Figure 1 describes schematically the implied
processing steps, from calibration of the stereo rig up to
the final 3D reconstruction. The operation of the system
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Figure 1: Processing steps of the stereovision-based 3D reconstruction procedure.
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Figure 2: Block-diagram of the cognitive system developed for
optimized 3D vision-based reconstruction tasks.

(i.e., the sequence of processing steps) can be summarized
as follows [2]:

(i) calibration of both cameras and of their relation,

(ii) segmentation of the stereo pair of images (extraction
of edge point, determination of contour point lists),

(iii) segmentation and classification of the edge point lists,
in order to define geometric features,

(iv) contour matching based on so-called epipolar con-
straint matrices [2],

(v) euclidian reconstruction using the calibration pa-
rameters.

The operating of the system (Figure 2) is controlled using
a software kernel built around an intelligent component
using situation graph trees (shortly SGTs) [1] as the plan-
ning/control tool. This component is able to manage and
to adjust dynamically and online the acquisition conditions
(i.e., camera positions and lighting source parameters such
as their position and/or intensity), leading eventually to
replanning of the process, in order to improve the quality
of the image data required by the 3D reconstruction step.
Specifically, treatments and reasoning about local image
contexts are favored when dynamic replanning is required
after failure of a given processing step. A global criterion

allows in our case to acquire well-contrasted images, even
though this may not necessarily guarantee success for the
whole vision task. Indeed, when the illumination intensity
is solely automatically adjusted, optimal 3D reconstruction
cannot in all cases be ensured despite the fact that the image
quality has been optimized.

To solve this problem, we have chosen to analyze the
placement of lighting sources moving within a virtual
geodesic sphere containing the scene to be imaged, in order
to define positions that allow acquisition of adequate images
(i.e., well contrasted, with minimized illumination artifacts),
that allow to reach, after detection of the required edges, the
desired accuracy for the following 3D reconstruction step
[14]. This enables to acquire best-quality images, with high
contrast and minimum variance. This latter is deduced from
fitting technique parameters.

4. Common Error Sources Affecting
3D Reconstruction

The stereovision-based 3D reconstruction in view of inspec-
tion tasks is sensitive to several types of error. Since
uncertainty is a critical issue when evaluating the quality of a
3D reconstruction, the estimation/assessment of errors in the
final reconstruction result has to be carried out carefully. In
our case, the errors in obtaining the desired 3D information
are estimated using expressions defined in terms of either
system parameters or error source characteristics likely to
be observed. In addition to this quantitative determination
of errors, other likely error sources affecting both system
modeling and calibration are also considered. An overview
of potential error sources is given in [15]. Similarly, in
[16], taking the specificities of our application into account,
we were able to define three major types of error sources.
These are related to camera model inaccuracies, resulting
camera calibration errors and image processing errors when
extracting the contour data. The 3D reconstruction results
can also be affected by correspondence errors occurring
during the matching process. Indeed, imprecise disparities
due to noise in the images and to calibration errors (through
the fundamental matrix) can be observed. As a consequence,
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during the standard triangulation step (i.e., the recon-
struction process), these errors in disparity can sometimes
be magnified when applying the projection matrices (also
defined using calibration parameters).

5. Error Evaluation of the Edge Detection Step

The extraction of edge information is the first fundamental
processing step of the whole 3D reconstruction procedure.
There are many ways to perform edge detection. In our case,
the edge or contour point detection relies on well-known
gradient-based methods. This latter convolves the image with
first derivatives of a Gaussian smoothing kernel to find and
locate the edge points. After evaluation of the processed
images, a selection criterion is then applied to decide whether
or not a pixel belongs to an edge. Edge-thinning algorithms
are applied in some cases, in order to improve the results,
specifically when the thickness of the primarily extracted
edges is considered being too large.

One of the aims of our contributions is to develop a fully
automated system (i.e., with very limited human control).
Accordingly, the parameters that control the edge detection
process (e.g., the width σ of the Gaussian smoothing kernel
or threshold parameter values) are determined automatically.
For example, the σ parameter value is determined using
a measure of the amount of camera noise observed in
the image and by the fine-scale texture of specific object
surfaces seen in the image. In the current implementation
of our approach, a fixed value (σ = 1) is used as a
starting value. Following contour point extraction, chains
of contour points are determined to form possibly closed
contours. Each contour point list is then further subdivided
into subchains defining either straight-line segments or
elliptical arcs using the method described in [17]. These
geometric features build the basis of the outline describing
the imaged objects, as it will be exemplified later on our test
workpieces.

However, these simple geometric features do not contain
necessarily only true edge points. This leads for the set
of edge point positions belonging to a given geometric
feature to uncertainties, which are further reflected in the
parameter values of the fitting equation used to describe
the data. Despite this observation, the line segment and
curve descriptions can be determined using more or less
standard fitting technique for the edge points supposed to
be on these lines or curves. For that purpose, linear or
nonlinear least-squares fitting techniques are widely used.
These latter minimize predefined figures of merit relying
on the sum of squared errors. When using a geometric
fitting approach, also known as the “best fitting” technique,
the error distance is defined by the orthogonal, or the
shortest, distance of a given point to the geometric feature
to be fitted. Applying geometric fitting to a line segment
is a linear problem, whereas its application to ellipses is a
nonlinear one, which is usually solved iteratively. Gander
et al. [18] have proposed a geometric ellipse fitting algorithm
in parametric form, which involves a large number of fitting
parameters (n + 5 unknowns in the set of 2n equations to
be solved, where n is the number of measurement points),

(a) Left and right image of the test object

(b) Classified geometric features

Figure 3: Representative stereo pair of images of the test piece and
corresponding extracted geometric features.

each used measurement point carrying an individual angular
parameter to be estimated simultaneously, together with the
five ellipse parameters.

In a related contribution, for line segments, Yi et al.
[19] discussed the relationship between the random per-
turbations of edge point positions and the variance of the
least squares estimates of the corresponding line parameters.
Assuming that the noise is independent and uniformly
distributed, as a result, they propose an optimized fitting
technique for lines. As the outline of our test workpiece
is composed of simple geometric features such as lines
and elliptical arcs, one can determine descriptors of these
lines or arcs using fitting techniques similar to the ones
described above, in order to obtain the parameters of these
features. In our work, we have extended Yi’s results to analyze
the edge detection error for both straight line segments
and elliptical arcs. The parameters of the fitted geometric
features are finally used as a quality measure to estimate
the 3D reconstruction error of the reconstruction procedure
carried out after having matched corresponding geometric
descriptors.

5.1. Error Analysis for Line Segments. The standard equations
for the parameters of a line (y = ax + b) that best describes
(x, y) data pairs, when all of the measurement error is
assumed to belong to the y-axis (i.e., the x values are assumed
to be error-free), are well known and easily derived. In this
case, one can apply a standard least-squares method. This
latter involves minimizing the sum of squared differences
between the fitted line and the data points in the y-direction.
However, for contour points extracted from an image, it
is more reasonable to assume that the uncertainties are
observed in both the x- and y-axis directions. In this case,
application of a fitting procedure is somewhat more complex.
Several methods have been published and discussed, as in
[20–27]. For example, in [27], an algorithm is developed,
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(a) Error distribution for a typical horizontal
line in the left image
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(b) Error distribution for a typical horizontal
line in the right image
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(c) Error distribution for a typical vertical
line in the left image
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(d) Error distribution for a typical vertical
line in the right image

2D error distribution
(μ = 0.67, σ = 0.32)

1.510.50

Error (pixels)

0
2
4
6
8

10
12
14
16
18

N
u

m
be

r
of

po
in

ts

(e) Error distribution for a typical elliptical
line in the left image
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(f) Error distribution for a typical elliptical
line in the right image

Figure 4: Error distributions for various types of matched geometric features in the left and right images of the test piece.
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Figure 5: Projection geometry from the 3D world to the 2D image.

which copes with the problem of fitting a straight line (with
the restriction that vertical lines are avoided) to data with
uncertainties in both coordinates. The problem has been
reduced by the authors to a one dimensional search for the
minimum. Expressions for the fitting parameters (variances
and covariance matrix) are derived, which are further used
for the estimation of uncertainties.

In our work, based on the approach described above,
we consider that a line in the x-y plane is described by the
following equation:

Ax + By + C = 0. (1)

Equation (1) represents all geometric lines in the plane,
including verticals (B = 0) and horizontals (A = 0).
Also, this relation ensures finiteness of the moments of the

estimates of the parameters, and helps to secure numerical
stability when applying the fitting procedure. The fitting line
is then determined by minimizing orthogonal distances. An
additional constraint (e.g., as in our case, A2 + B2 = 1) is
imposed in order to ensure uniqueness of the solution, as
suggested in [28] for so-called linear equality-constrained
least squares (LSE) fitting methods.

To estimate the parameters A, B, and C, we have used the
singular value decomposition (SVD) approach. Errors are
quantified by the perpendicular distances of the edge pixels
to the fitting line. These errors are interpreted as representing
the error for the edge detection process in the case of straight
lines.

5.2. Error Analysis for Arcs of Ellipses. For computer vision
based applications such as inspection tasks, ellipses, or arcs
of ellipse are a major type of geometric primitives. They
are the image (perspective projections) of circles, which
on workpieces can be associated with holes. Due to the
importance of this kind of features, a large set of fitting
methods have been suggested, as, for example, in [18, 29–
31], to compute ellipse equations from data point sets. In
particular, Gander et al. [18] propose a geometric ellipse
fitting algorithm in parametric form. Their method achieves
a good compromise between accuracy of the results and
required computing time.
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In this approach, an ellipse in a general position is
expressed in parametric form as follows:

XY =
⎡
⎣Ox

Oy

⎤
⎦ + Q(∝)

⎡
⎣a cosϕ

b sinϕ

⎤
⎦, (2)

where

Q(α) =
⎛
⎝cosα − sinα

sinα cosα

⎞
⎠. (3)

XY are the vectors [x y]T and describe the set of points
to be fitted, O[Ox Oy]T is the center of the ellipse, a and b
are, respectively, the semimajor and the semiminor ellipse
axis (assuming b < a) and α is the angle between the x-axis
and the major axis of the ellipse.

Even though the ellipse could also have been described by
the canonical equation ax2 + bxy + cy2 + dx + ey + f = 0,
the description given by (2) is preferred, as it leads to more
efficient implementations of the fitting procedure.

Ellipse fitting is performed using a nonlinear least-
squares approach, minimizing the squared sum of orthog-
onal distances of the points to the fitting ellipse. That implies
minimizing the following criterion:

F =
⎡
⎣x
y

⎤
⎦−

⎡
⎣Ox

Oy

⎤
⎦−Q(∝)

⎡
⎣a cosϕi

b sinϕi

⎤
⎦, (4)

where i = 1, . . . ,n; and ϕi(0, . . . , 2π) are the n uniformly
distributed unknown angles associated with the set of points
to be fitted.

Here also, the sum of orthogonal distances is interpreted
as representing the error for the edge detection process in the
case of ellipses.

5.3. 2D Error Propagation. The error estimates, based on the
distances computed as described in the previous section, are
then propagated up to the 3D reconstruction step.

Stereovision refers to the ability to infer information
on the 3D structure and distance of a scene from two
images taken from different viewpoints, assuming that
the relationship between the 3D objective world and the
acquired 2D images (see Figure 5), namely the projection
matrix, is known. Two main problems have to be solved:
finding the correspondences and the reconstruction itself.
Determining the correspondences leads to find which parts
in the left and right images are projections of the same scene
element, whereas the reconstruction problem determines the
3D structure from the correspondences, using additional
information such as the calibration parameters if a metric
reconstruction is desired.

A camera is usually described using the pinhole model
and calibration enables to quantify the projection matrix. As
it is well know, there exists a collineation, which maps the
projective space to the camera’s retinal plane: P3 → P2. Then,
the coordinates of a 3D point X = [x, y, z]T in an Euclidean
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Figure 6: 3D measurement using a stereovision sensor.

world coordinate system and the retinal image coordinates
x = [u, v]T are related by

λ
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v

1
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z
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, (5)

where λ is a scale factor, c = [u0, v0]T is the principal point,
fx and fy are focal lengths, s is the skew angle, R and T are
extrinsic parameters describing the attitude of the camera in
the scene with respect to a reference coordinate system. R is
a 3× 3 rotation matrix, which relates the camera coordinate
axes with those of the reference coordinate system. T is the
translation in the X , Y , and Z directions representing the
camera center in the reference coordinate system [32]. For
stereovision, the same reference coordinate system is used for
both views of the stereo couple.

Equation (5) can be expressed as

λx =MX, (6)

where x = [u, v, 1]T and X = [x, y, z, 1]T are the homoge-
neous coordinates of the corresponding spatial vectors, and
M is a 3× 4 matrix, called the perspective projection matrix,
representing the collineation: P3 → P2.

If the image coordinates of the same 3D point in the two
images can be obtained, the world coordinates of this point
can be calculated using the two-camera geometry of Figure 6.
For the two cameras, we have thus

λ1x1 =M1X, λ2x2 =M2X. (7)

In the resulting linear system, the three unknowns X(x, y, z)
can be determined, solving the system using, for example,
linear least-squares methods. Exponent 1 represents the left
image and exponent 2 the right image. As described in
the previous section, line and ellipse fitting provides 2D
error estimates (du1

i ,dv1
i ,du2

i ,du2
i ) for each pixel i and for
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each contour that compose the object of interest. The pixel
coordinates can then be expressed by the following:

u1
i = u1

i ± du1
i , v1

i = v1
i ± dv1

i ,

u2
i = u2

i ± du2
i , v2

i = v2
i ± dv2

i .
(8)

The quantities in (8) are further propagated through the 3D
reconstruction process using (7), leading to the 3D mea-
surements. Calibration and correspondence errors occurring
during the calibration and the matching processes have not
yet been considered.

6. Results

With the objective to quantify the errors for 3D reconstruc-
tion results, we have used a quasipolyhedral test object of
known size (overall size: 80 × 50 × 40 mm), an example of
which is shown on Figure 3(a). The images of this object are
composed of straight lines, arcs, and ellipses (resulting from
the perspective projection of circles from the object onto the
image plane).

Firstly, and in order to simplify the error analysis, the
experimental images are acquired under good illumination
conditions in order to obtain images of good quality.
Figure 3(a) shows an example of a pair of images of the object
acquired, respectively, with the left and the right camera of
the stereo rig.

The first image processing step in our system provides the
desired edge detection results. For each line or curve of the
object, the corresponding contour points have been firstly
extracted using Canny’s edge operator and secondly classified
either as lines or ellipses. Figure 3(b) shows the results of the
edge detection and classification steps, after segmentation of
the lists of contour points. The same color is used in the
two pictures to show the geometric features that have been
associated, that is, matched. These pairs of features are the
input data for the matching and the reconstruction step.

In a second step, we have then applied the fitting
techniques described in Sections 5.1 and 5.2 to the edge
point lists supposed to belong to either a line or a curve.
However, as noted above, edge point positions are always
affected by uncertainty, due to, for example, the image
digitization process, the various noise sources in the system,
and the nonideal behavior of the image processing steps.
In [16], the encountered error sources are assumed to be
independent and identically distributed. The resulting errors
are statistically expressed as “confidence intervals.” Such
an interval is computed for each pixel belonging to the
projection of either a line or ellipse on the image plane. In
our case, 95% confidence intervals are calculated such as to
include in the intervals at least 95% of the points predicted to
belong to the associated geometric feature. Here, we compute
the perpendicular distances of a given contour, defining
a given geometric feature, to its corresponding geometric
feature described using the parameters resulting from the
fitting procedure. These distances are believed to be more
significant and reliable, specifically when taking the target
applications (e.g., quality control) into account.

Figure 4 shows typical computed 2D error distributions
for the two types of geometric contours evaluated in this
contribution, composing the object of interest and extracted
from both the right and left images. Results corresponding
to vertical and horizontal contour lines should exhibit
error distributions with mean values of zero, as it is the
case on Figures 4(a) to 4(d). The distributions of the
distance measurements corresponding to elliptical features
are expected to be non-Gaussian, as shown on Figures 4(e)
and 4(f). These distance data are then to be propagated up to
the 3D reconstruction step.

Solving the reconstruction problem involves two main
steps. Firstly, the correspondence problem has to be
addressed and, secondly, the depth has to be estimated. In
this work, establishing correspondences (i.e., defining pairs
of corresponding points belonging to matched geometric
primitives) relies on matching functions based on the so-
called epipolar constraint [2]. For that purpose, a dedicated
similarity criterion is computed, which is based on the
number of intersections of the set of epipolar lines with a
given contour of each image. As a result, for each image,
so-called matching matrices are obtained. The matrix Match
(right, left) (resp., Match (left, right)) contains all possible
matches between right and left primitives (resp., between left
and right primitives). Finally, matching can be finalized by
searching for corresponding maxima in the two matrices, as
indicated in the algorithm given below, which summarizes
the whole process (Algorithm 1).

Estimating the 3D coordinates from each matched point
pairs, leading to the desired 3D reconstruction, is routinely
and easily achieved applying a simple procedure known as
triangulation.

If both the intrinsic and extrinsic parameters of the
camera setup are known, the resulting reconstruction is
called Euclidean, that is, the reconstruction is metric.

As a prerequisite for applications such as inspection or
quality control tasks, estimation of the error affecting the
3D reconstruction is essential in order to be able to evaluate
quantitatively the dimensions of the object or to state if the
reconstruction results fulfill tolerance rules.

Further, these error estimates enable also to qualify the
behavior of the vision system. With this objective, we firstly
evaluate the accuracy/quality of the reconstructed contours
using a linear orthogonal regression procedure, carried out in
the 3D space and based on a standard principal components
analysis of the reconstructed geometric features. Figure 7
illustrates the resulting 3D error distributions in the X , Y ,
and Z directions of a reference coordinate system (here,
the camera coordinate system). The mean errors μx, μy ,
and μz and associated variances σx, σy , and σz are also
indicated, as they build the basic descriptors of the computed
distributions. Application of the method is only shown here
for vertical and horizontal contours. As can be seen in
Figure 7, the distributions are approximately normal, with a
mean value of zero and a variance which varies in the range
(0, 0.6) mm for a typical vertical reconstructed contour and
(0, 1.2) mm for a typical horizontal reconstructed contour.

The difference in accuracy for a vertical edge, compared
to that of a horizontal one, can be also observed in Figure 8.
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(b) 3D error distribution in the y-direction
(vertical contour)
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(c) 3D error distribution in the z-direction
(vertical contour)
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(d) 3D error distribution in the x-direction
(horizontal contour)
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(e) 3D error distribution in the y-direction
(horizontal contour)

3D error distribution in the
Z direction (μz = 0, σz = 1.27)
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(f) 3D error distribution in the z-direction
(horizontal contour)

Figure 7: 3D error distribution in the x, y, and z-directions of a typical vertical and horizontal reconstructed contour.

(1) Estimation of the epipolar geometry
(2) Determination of the candidate matches

(a) For each left primitive, computation of the number
of intersections of epipolar lines with right primitives.
The result is the matrix Match (left, right).

(b) For each right primitive, computation of the number
of intersections of epipolar line with left primitives
in the other image. The result is the matrix
Match (right, left).

(3) Finalization/validation of the matches
(c) Computation of the similarity criterion between the

two matrices: searching for corresponding maxima
in the two matrices.

(d) Elimination of the matched contours according to
step (c) in the two matrices.

(e) Repeat steps (a) to (d) until all contours have been
processed.

Algorithm 1: Matching procedure.

Thus, the quality of reconstructed vertical contours is better
than that for horizontal ones. This observation can be traced
back to the matching problem. As a matter of fact, vertical
contours are easier to match accurately than horizontal ones,
due to the configuration of the cameras of the stereo rig.

Usually, the optical axes of the cameras are not aligned, that
is, parallel, as it is the case for the geometry used when
rectifying a stereo pair of images.

Such a configuration could be obtained by rotating the
cameras from their original positions to reach alignment. An
alternative is accordingly needed to rectify the stereo pair
of images. As a result, matched image points corresponding
to point features in a rectified image pair will lie on
the same horizontal scanline and differ only in horizontal
displacement. This horizontal displacement or disparity
between rectified feature points is directly related to the
depth of the 3D feature point. Further, the rectifying process
does not require a high computation cost.

Work is currently being devoted to enhance the over-
all performance of the matching procedure. As could
be expected (the behavior being routinely observed for
stereovision-based reconstruction procedures), the error in
the Z direction (i.e., range) is much higher than that in
the X and Y directions (corresponding approximately to
the directions of the coordinate axes of the image plane).
This behavior is induced by the vergence of the cameras.
Indeed, controlling the vergence of the optical axes of the
cameras defines a basic tool to obtain good results when
applying a matching algorithm, because the disparity values
related to the object of interest can be reduced. Knowledge of
the vergence also allows a distance measure of the so-called
fixation point (defined as the intersection point between
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(a) Propagated 3D error distribution (x-
direction) (vertical contour)
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(b) Propagated 3D error distribution (y-
direction) (vertical contour)
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(c) Propagated 3D error distribution (z-
direction) (vertical contour)
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(d) Propagated 3D error distribution (x-
direction) (horizontal contour)
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(e) Propagated 3D error distribution (y-
direction) (horizontal contour)
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(f) Propagated 3D error distribution (z-
direction) (horizontal contour)
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(g) Propagated 3D error distribution (x-
direction) (elliptical contour)

Propagated 3D error
in the Y direction

0.250.20.150.10.050

Error (mm)

0

5

10

15

N
u

m
be

r
of

po
in

ts

(h) Propagated 3D error distribution (y-
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(i) Propagated 3D error distribution (z-
direction) (elliptical contour)

Figure 8: Propagated 3D error distributions in the x, y, and z-directions for, respectively, a typical vertical, horizontal, and elliptical
reconstructed contour.

the focal axes and the surface of the object of interest in
the scene). This measure is obtained by carrying out a
triangulation involving the focal axes (i.e., their intersection).
Knowing this distance enables to control the vergence by
calculating the distance information of the object of interest.
One can also use disparity information related to the object,
according to its position in the left and right images [33].

Lastly, as a final test, we have also propagated the
2D errors observed for edge points through to the 3D
computation step, in order to estimate the final 3D error

for single points. Figure 8 shows the obtained 3D error
distributions in the X , Y , and Z directions after propagation
of the 2D errors. Again, we can observe that the error in the
Z direction is much higher than in the other two directions.

Finally, Figures 9 and 10 show the partial 3D recon-
structions (i.e., corresponding to the point of view of the
stereo sensor) of our test object, after having applied the
triangulation procedure to either the extracted 2D contours
or their corresponding descriptors (i.e., the fitting equations
of the contours).
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Figure 9: Partial 3D reconstruction using actually extracted con-
tours.
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Figure 10: Partial 3D reconstruction using the fitting equations
approximating the contours.

The reconstruction using the descriptors shows that the
object is better estimated, as the reconstruction step allows
recovering parts of contours, which have not been extracted
adequately (this is especially the case for the elliptical parts
of the object). In Figure 11, an example of a reconstructed
3D vertical contour is shown, together with associated errors
bounds drawn as ellipses. As an example, the 3D errors are
shown for one contour, which is the vertical line represented
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Figure 11: Example of a reconstructed 3D contour and associated
error bounds drawn as ellipses; the line corresponds to the vertical
line represented in blue in Figure 3(b).

in blue in Figure 3(b), in order to illustrate the method. The
2D ellipses around the contour represent the errors in the z-
and y-directions. Since these errors are not the same for all
points along the line, the two axes of the ellipse are different,
depending on the position along the line. The reason for
this change in error magnitude can be traced back to the
perpendicular distance of the pixels belonging to the edge
described as a line after the fitting step. We recall that this
distance can be interpreted as representing the error resulting
from the edge detection process for the case of straight line
primitives, which cannot basically be assumed to be of the
same magnitude.

7. Conclusions and Outlook

In this paper, we have introduced a method for analyzing
and evaluating the uncertainties encountered during vision-
based reconstruction tasks. Specifically, the uncertainties
have been estimated from the feature extraction step up
to the triangulation based 3D reconstruction embedded
within a cognitive stereovision system. As a result, the
reconstruction process is sensitive to various types of error
sources, as indicated in [16]. In this paper, we have mainly
considered the errors introduced by the image segmentation
procedure, their estimates being propagated through the
whole reconstruction procedure.

Approximating the contours point lists describing the
piece under evaluation using fitting results, assuming further
that the various errors, specifically those related to image
processing, are independent and identically distributed, we
have estimated error bounds for the edges detection process.
These errors are defined as being equal to the orthogonal
distances of the contour pixels to the geometric feature
described by the corresponding fitting parameters. These
data are computed for each geometric feature being part of
the object of interest. Using a dedicated error propagation
scheme, the estimates have also been propagated through
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the whole processing chain setup for analyzing the images
acquired with our stereovision system.

Since the resulting 3D reconstruction depends on image
quality, the experimental images are usually acquired under
good illumination conditions, in order to obtain images of
sufficient quality using, for example, the approach described
in [14]. Controlling the acquisition conditions allows mini-
mizing the 3D measurement error. The experimental results
presented here validate the error estimation technique and
show that reconstructions of good quality with reasonable
accuracy can be automatically computed. In comparison
with previously obtained results, the measures presented
above, with our suggested error propagation scheme, are of
much higher precision and lead to reduced 3D reconstruc-
tion errors.

Generalization of the error propagation scheme is cur-
rently in progress in order to take into account all the other
sources of errors, more specifically the matching errors.
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