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A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The
great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult
with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both
textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predict-
ing the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition
unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in
interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for
interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than
the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the
CIF and PAL video sequences.
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1. INTRODUCTION

Interlaced scanning, or interlacing, which performs vertical-
temporal subsampling of video sequences was used to lower
the costs of video system and reduce transmission bandwidth
by half while retaining visual quality in traditional TV. One
common characteristic of many television standards evolv-
ing over time, such as PAL, NTSC, and SECAM, is interlaced
scanning. With recent advancements of digital TV (DTV),
high-definition TV (HDTV), and multimedia personal com-
puters, deinterlacing has become an important technique
which converts interlaced TV sequences into frames for dis-
play on progressive devices such as LCD TVs, plasma dis-
play panels, and projective TVs. Intrinsic to this interoper-
ability of the two seemingly separate domains is the con-
version of interlaced TV formats to progressive displays via
deinterlacers. Hence, the increased demand for research in
video processing systems to produce progressively scanned
video with high-visual quality is inevitable [1].

The deinterlacing problem can be stated as

po(i, j, k) =
⎧
⎨

⎩

pi(i, j, k), ( j + k)%2 = 0,

p̂(i, j, k), otherwise,
(1)

where pi, p̂, and po denote the input, interpolated, and out-
put pixels, respectively. i, j, and k represent horizontal, verti-
cal, and temporal pixel indices. % is modulo operation. The
vertical-temporal downsampling structure of interlacing is
also explained in (1), in which p̂ indicates the missing point
due to interlacing.

The challenge of deinterlacing is to interpolate the miss-
ing points p̂ with limited information and also to maintain
clear visual quality as well. However, visual defects such as
edge flicker, line crawling, blur, and jaggedness due to the in-
herent nature of interlaced sequences frequently appear and
produce annoying artifacts to viewers if deinterlacing is not
done properly.

The key concept of deinterlacing is to interpolate the
missing point with spatio-temporal neighbors that have the
highest correlation. A wide variety of deinterlacing algo-
rithms, following this principle, has been proposed in the last
few decades. A comprehensive survey can be found in [2].
We introduce several frequently used techniques, which are
helpful in understanding this paper, in the following.

Since pi(i, j − 1, k), pi(i, j + 1, k), and pi(i, j, k − 1) are
the nearest neighbors of p̂(i, j, k), they potentially have the
highest correlation. Two simple interpolation strategies, line
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average (LA) and field insertion (FI), were hence proposed.
LA, an intra-interpolation method, interpolates p̂(i, j, k)
with (pi(i, j−1, k), pi(i, j+1, k))/2. On the other hand, FI, an
inter-interpolation method, repeats pi(i, j, k−1) as p̂(i, j, k).
LA and FI methods are so simple that they cannot handle
generic video contents. LA blurs vertical details and causes
temporal flickering. FI introduces line crawl of moving ob-
jects.

Another intra-interpolation method, called edge-based
line average (ELA) [3], was proposed to preserve edge sharp-
ness and integrity and avoid jaggedness of edges. ELA in-
terpolates a pixel along the edge direction explored by com-
paring the gradients of various possible directions. Although
ELA is capable of restoring the edges of interlaced video, it
also introduces “pepper & salt” noises when edge directions
are misjudged. Moreover, the weakness in recovering com-
plex textures is one of its drawbacks. Some variations of ELA,
such as adaptive ELA [4], enhanced ELA (EELA) [5], and ex-
tended intelligent ELA algorithm [6] were proposed to fur-
ther improve its performance.

Motion-adaptive methods [7–9] were proposed to alle-
viate the impact of motion so that the correlation of the
reference pixels for interpolation is higher. Motion-adaptive
deinterlacing employs motion detection (MD), and switches
or fades between filtering strategies for motion and non-
motion cases by calculating the differences of luminance
between several consecutive fields. A good survey on mo-
tion detection of interlaced video can be found in [10].
Motion detection requires field memories to store previous
fields and possibly future fields. With more fields and thus
more information, the detection accuracy is usually higher
at the cost of more field memory in VLSI implementation.
In motion-adaptive deinterlacing, intra-interpolation is se-
lected for motion cases, while inter-interpolation is used
for stationary scenes. The visual quality of motion-adaptive
methods highly relies on the correctness of motion informa-
tion. Textures make correct motion detection, especially the
detection of fast motion, even more difficult, since the verti-
cal and temporal high frequencies are mixed up in interlaced
video. It was reported in [11] that texture analysis by wavelet
decomposition can enhance the precision of motion detec-
tion. Motion-compensated methods [12–15] involve motion
estimation [16–18] for filtering along the motion trajecto-
ries. They perform very accurate interpolation at the cost of
much higher hardware expenditure.

Rich video contents provide viewers with high-visual
satisfaction but complicate the deinterlacing process, since
different visual signal processing strategies should be ap-
plied to the video signals with more information. The
motion-adaptive method with FI and LA switches between
a vertical all-pass filter and a temporal all-pass filter and
hence provides a content-adaptive algorithm. However, the
adaptability of motion detection and intra-interpolation did
not draw much attention before. The earlier motion detec-
tion algorithms focused on accurate same-parity detection
but neglected the detection of fast motion. Moreover, in-
creasing the number of fields to obtain higher accuracy also
accompanies higher cost of memory hardware. On the other
hand, ELA-styled interpolations emphasized the sharpness of
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Figure 1: Block diagram of the proposed deinterlacing algorithm.

edges but ignored the importance of textures. The robustness
of these algorithms toward different video contents can still
be enhanced.

In this paper, we present a hybrid motion-adaptive dein-
terlacing algorithm (HMDEPR), which consists of novel hy-
brid motion detection (HMD) and edge-pattern recognition
(EPR) with emphasis on content-adaptive processing. HMD
is capable of detecting versatile motion scenarios by using
only three fields. EPR targets the interpolation of edges and
textures, which can not be handled by using either LA or ELA
alone. The experimental results indicate that our HMD, EPR
for intra-interpolation, and our deinterlacing algorithm all
exhibit higher robustness toward assorted video scenes. This
paper is organized as follows. Section 2 presents our motion-
adaptive deinterlacing algorithm. The experimental results
and performance comparison are shown in Section 3. The
conclusion of this research is drawn in Section 4.

2. THE PROPOSED DEINTERLACING ALGORITHM

We introduce a deinterlacing algorithm which adapts to the
motion, texture, and edge contents of the video sequence.
The overall algorithm, shown in Figure 1, consists of a mo-
tion detector and a pixel interpolator. Our motion detector
employs HMD and a refinement unit. The interpolator in-
cludes EPR and FI. FI is used when a pixel is detected as sta-
tionary, and EPR is used otherwise. HMD and EPR are tac-
tically designed to achieve high adaptability towards a great
variety of motion, textures, and edges.

2.1. Motion detection

The goal of motion detection is to identify motion scenes
and enable intra-interpolation. We employ a hybrid motion
detector (HMD) which requires the pixel data of only three
fields. The pseudo-codes of the HMD are shown in Figure 2.
The three conditions are dedicated to the detection of slow
motion, fast motion, and motion with edges.

The first condition of HMD is traditional 3-field motion
detection. The 3-field motion detection is capable of detect-
ing most of the motion scenarios except the case in which
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diff1 = abs(a− b)
diff2 = abs[b− (c + d)/2]
diff3 = abs[b− (g + h)/2]
diff4 = abs[a + (e + f )/2− b − (g + h)/2]

if diff1 > TH1 � 1st condition
flag←−motion

else if diff2 > TH1 AND diff3 < TH2 � 2nd condition
flag←−motion

else if diff4 > TH3 � 3rd condition
flag←−motion

else
flag←− stationary
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Figure 2: The proposed hybrid motion detection algorithm. (a)
Pseudocodes, (b) pixel definition.

moving objects or backgrounds only appear in field n but
neither in field n − 1 nor field n + 1. This is supported by
the fact that near-zero difference of a − b in this case falsely
indicates no motion. Hence, in the second condition, we fur-
ther take the line average result as a temporarily interpolated
point and detect motion between two consecutive fields un-
der the condition that the vertical variation diff3 is small.
This 2-field motion detection operates on the previous field
rather than the next field so as to coherently work with FI
from the previous field in stationary scenes. The proposed
HMD combines the merits of 3-field motion detection and
2-field motion detection, which are good detection accuracy
for stationary pixels, and the ability to detect the very fast
motion that cannot be detected by 3-field motion detection,
respectively. The third condition enhances the detection ac-
curacy of edges. The reason will be explained in Section 3.2
with motion maps.

We employ a binary nonsymmetric opening morpholog-
ical filter to further refine the motion map of HMD. First,
an erosion filter with a cross-shaped mask, as shown in
Figure 3(a), is performed on the results of HMD. The ero-
sion filter eliminates isolated moving pixels. A dilation filter
with a 3 × 3 mask, as shown in Figure 3(b), is performed af-
ter erosion to restore and extend the shape of moving objects
after erosion. The inability to detect motion is referred to as
motion missing, which results in motion holes on the interpo-
lated images, and the detected motion of stationary objects as
false motion. The nonsymmetric opening morphological fil-
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Figure 3: Nonsymmetric opening operation. (a) Erosion, (b) dila-
tion.
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Figure 4: Edge pattern. (a) Pixel definition, (b) 3H1L pattern, (c)
3L1H pattern, (d) 2H2L corner pattern, (e) 2H2L stripe pattern.

ter can minimize the visual artifact caused by motion missing
problem and enhance the overall performance in spite of the
corresponding false motion problem.

In our HMD, two filtering strategies, that is, the first and
the second conditions, are used to cover motion with vari-
ous speed and result in correct detection of motion. Mov-
ing edges are also considered by the third condition. The in-
clusive detection strategies contribute to the adaptability of
HMD. Moreover, the short field delay offers higher temporal
correlation for interpolation than 4-fileld and 5-field algo-
rithms. Its low-memory cost also makes it attractive for VLSI
implementation.

2.2. Interpolation

There are two interpolation schemes in the proposed
motion-adaptive deinterlacing algorithm to be chosen from.
EPR is the intra-field interpolator used in moving scenes, and
FI is the inter-field interpolator used in stationary scenes.
HMD adaptively selects intra-field or inter-field interpola-
tion as the output.

Moving textures are very difficult to interpolate because
aliasing may already exist after interlacing as explained by the
spectral analysis in [2]. Inspired by color filter array, which
has been widely used in cost-effective consumer digital still
cameras [19], we adapt it for texture and edge interpola-
tions. In Figure 4, there are four unique types of edge pat-
terns within a 3 × 3 window, which are 3H1L edge patterns,
3L1H edge patterns, 2H2L corner patterns, and 2H2L stripe
patterns. The definition of “H” and “L” pixels is similar to
delta modulation in communications systems. If the pixel
value is larger than the average of pixel a, b, c, and d, it is
marked as “H” and marked as “L” otherwise. We can obtain
14 distinct patterns with different orientations.

By considering 3H1L and 3L1H edge patterns in Figures
4(b) and 4(c), it is obvious that the center pixel X is very
likely to be one of the majority neighbor pixels. Hence, the
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Figure 5: The interpolation method of 2H2L corner pattern.
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Figure 6: The interpolation method of 2H2L stripe pattern.

median of H or L pixels around X are calculated as the in-
terpolation result. Consider the 2H2L corner pattern shown
in Figure 4(d), the gradients in horizontal directions, |p− q|
and |r − s|, are computed. If |p − q| is larger than |r − s|, it
indicates that the gradient at upper position is larger than
that at lower position. There is an “H” corner in the 3 ×
3 window. In this condition, the function minimum(H,H)
is applied to interpolate pixel X; Otherwise, there is a “L”
corner and the function maximum(L, L) is applied as shown
in Figure 5. The other three corner patterns can be calcu-
lated in a similar way. As for the 2H2L stripe pattern in
Figure 4(e), four gradient values, |p − q|, |r − s|, |p − r|,
and |q − s| are computed here. As shown in Figure 6, if the
sum of horizontal gradient values is larger than the sum of
vertical ones, minimum(H,H) is applied because there ex-
ists a vertical edge; otherwise, the function maximum(L, L)
is used due to a horizontal edge. The median filter of 3H1L
and 3L1H patterns, and the minimum filter and maximum
filter of “H” pixels and “L” pixels can avoid the interpolation
of an extreme value and thus minimize the risk of “pepper &
salt” noises.

The pixels b and c in Figure 4(a), like X, are also missing
pixels in interlaced video. To prevent error propagation, we
adaptively obtain b from the previous field if it is detected
as stationary and from the average of p and r if it is mov-
ing. Likewise, the value of c can be calculated for EPR of X.
Predicting b and c adaptively from either spatial or tempo-
ral neighbors greatly increases their correlation with the X,
which again helps with the pattern analysis and interpola-
tion.

EPR provides a low-complexity deinterlacer which effi-
ciently adapts to textural and edge contents during interpo-

Table 1: The abbreviations of the algorithms.

Abbreviation Full name

FI Field-insertion

LA Line-average

ELA Edge-based line-average [3]

EELA Enhanced edge-based line-average [5]

EPR Edge-pattern recognition (proposed)

HMD Hybrid motion detection (proposed)

HMDEPR
Motion-adaptive deinterlacing with HMD

and EPR (proposed)

2FMA 2-field motion-adaptive deinterlacing

3FMA 3-field motion-adaptive deinterlacing

4FTD
4-field motion-adaptive algorithm with

texture detection [21]

4FHMD
4-field motion-adaptive algorithm with

horizontal motion detection [5]

lation. The uniqueness in using EPR in deinterlacing is that
complex scenes with textures or edges are analyzed and cate-
gorized into reasonable number of patterns by delta modula-
tion, which adaptively determines on the prediction value for
the one-bit encoding of the four pixels and thus accommo-
dates extensive cases of input video. The pattern encoding is
followed by an associated filtering scheme using the contex-
tual information from the vicinity having high correlation.
The simple hardware realization of delta modulation and the
corresponding operations also makes EPR more favorable.

3. EXPERIMENTS AND THE RESULTS

Deinterlacing is commonly applied to standard definition
(SD) video signals such as PAL and NTSC. We have experi-
mented on several SD video sequences for subjective compar-
ison. However, to objectively and comprehensively present
the performance of HMDEPR, we also show the results of
CIF video sequences. When the same continuous video sig-
nal is sampled in CIF and SD resolution, the CIF sequence
would have a wider spectrum and have more high-frequency
components near the interlace replicas than SD after inter-
lacing [2, 20]. The CIF sequences are thus used as critical test
conditions.

We compared our algorithm to LA, FI, 2-field motion-
adaptive algorithm (2FMA), 3-field motion-adaptive algo-
rithm (3FMA), 4-field motion-adaptive algorithm with tex-
ture detection (4FTD) [21], and 4-field motion-adaptive al-
gorithm with horizontal motion detection (4FHMD) [5].
To facilitate the reading, we summarize the abbreviation of
these algorithms in Table 1. The detailed setting of all al-
gorithms and other experimental conditions are described
in Section 3.1. To clearly demonstrate the performance of
our algorithm, we separate the experiments into three parts.
Section 3.2 analyzes our motion-detection algorithm with
the contribution of each step. The second part, shown in
Section 3.3, compares the EPR algorithm with other intra-
interpolation methods. In Section 3.4, we combine FI, EPR,
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if abs(pi(i, j − 1, k)− pi(i, j, k − 1)) > TH2FMD

line-average,
else

field-insertion,

Algorithm 1

if abs(pi(i, j, k − 1)− pi(i, j, k + 1)) > TH2FMD

line-average,
else

field-insertion.

Algorithm 2

and HMD as the deinterlacer and show its subjective and ob-
jective performance and comparison.

3.1. Experimental settings

2FMA and 3FMA are two simple motion-adaptive algo-
rithms used to highlight the accuracy of HMDEPR. The de-
tail of 2FMA is described as in Algorithm 1 where the sym-
bolic definition is the same as in 1.

3FMA, also known as the simplest same-parity motion
detection, is described as in Algorithm 2.

4FTD [21] performs not only motion detection, but also
texture detection. The simplified algorithm is described as
in Algorithm 3 where max diff is the maximum of three ab-
solute differences in the 4-field motion detection. Var is the
variance of the 3 × 3 spatial block centered at the current
pixel. This algorithm classifies the current pixel as one of
the four cases: moving textural region, moving smooth re-
gion, static textural region, and static smooth region with
associated interpolation methods. The pixels used in 3-
dimensional (3D) ELA in [21] are missing pixels. In our ex-
periment, we reasonably use

{
pi(i + m, j + n, k + l) | m ∈ {−1, 0, 1},
n ∈ {−2, 2}, l ∈ {−1, 1}}. (2)

4FHMD [5] performs horizontal motion detection. If the
temporal difference is smaller than an adaptive threshold,
temporal interpolation along the moving direction will be
adopted. Otherwise, 5-tap EELA will apply to the motion
scenes. In the EELA, the threshold THEELA is required to en-
sure a dominate edge and thus avoid “pepper & salt” noises
caused by edge misjudgments. The current pixel for thresh-
old adjustment is missing, which is not explained in [5]. We
use the line average result for threshold adjustment in our
implementation.

Table 2 shows the thresholds used throughout our exper-
iments. They are tuned to achieve optimally subjective and
objective output video quality. The threshold TH1 of our al-
gorithm is set to a small value to prevent motion missing
problem. Although it causes more false motion at the same

if max diff ≥ TH4FTD Motion,

AND Var > TH4FTD Texture

3D− ELA,
else if max diff < TH4FTD Motion,

AND Var > TH4FTD Texture

modified-ELA,
else if max diff ≥ TH4FTD Motion,

AND Var ≤ TH4FTD Texture

VT-linear-filter,
else

VT-median-filter,

Algorithm 3

time, this negative effect is alleviated by EPR. TH2 is set to
prevent erroneous opposite-parity difference that appears in
textural scenes. TH3 is set as the double of TH1, since two
difference pairs are involved. Quantitatively, the performance
is not sensitive to any thresholds in Table 2 since the PSNR
difference of the test sequences is less than 0.01 dB if we in-
crease or decrease one of the thresholds by one. Moreover,
the visual difference of changing TH1 from 4 to 12 is not
perceivable unless very carefully inspected.

In the determination of 2FMA, a large threshold favors
stationary scenes such as Silent and Mother & daughter,
while a small threshold benefits moving scenes. The value
was fixed to balance the gain and loss of all sequences. Similar
tradeoff was made for the other thresholds. There was, how-
ever, a special situation in determining TH4FTD Texture. “Pep-
per & salt” noises are a serious problem in 3D ELA. Eventu-
ally, TH4FTD Texture was set to a large value to prevent choosing
3D ELA. Only sharp edges are detected as texture regions.

The PSNR of the kth frame is calculated by 5, where pp
is the pixel in progressive sequences. M and N are the frame
width and frame height. Other symbolic definitions are the
same as in 1. We exclude the boundary cases, the first and the
last line, in PSNR calculation. The PSNR in Section 3.4 is the
average value of all frames between the third frame and the F
−1th frame, where F is the total frame number of a sequence:

PSNR(k)

=10 log10
2552

((∑M−1
i=0

∑N−2
j=1

[
po(i, j, k)−pp(i, j, k)

]2
)

/MN
) .

(3)

3.2. Experimental results ofmotion detection

We take the 157th motion map of foreman in CIF resolution
as an example to explain the contribution of HMD step-by-
step. In Figures 7(a)–7(f), the fused 156th and 157th fields
of Foreman are overlaid with motion maps. The transpar-
ent regions are the motion regions, and the opaque regions
are detected as stationary. The edges of the building and the
fast moving gesture are two crucial parts in motion detection,
since severe line crawl will be observed if the motion is not
detected correctly. All the regions with moving hand, either
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Table 2: The thresholds in our experiments.

Algorithms Thresholds Value

HMDEPR
TH1 8

TH2 20

TH3 16

2FMA TH2FMA 20

3FMA TH3FMA 20

4FTD
TH4FTD Motion 80

TH4FTD Texture 80000

4FHMD THEELA 20

in 156th or 157th fields should be detected as moving regions
where FI is not applicable.

In Figure 7(a), most of the motion regions are success-
fully detected by the first condition. However, some ges-
tures are still missing due to the fast movement. The sec-
ond condition, targeting the detection of fast motion, solves
the problem for the first condition, and the result is shown
in Figure 7(b). The edges of the building are composed of
two smooth regions with different luminance. Limited by
the aperture problem, the motion regions of the edges de-
tected by the first condition are very thin lines. These de-
tected lines will be totally eroded by the morphological filter,
which again causes line crawl near the edges. The second con-
dition is not applied to the edges as a result of vertical varia-
tion checking. The third condition of HMD is therefore used
to detect the motion of edges. The vertically extended detec-
tion window enlarges the detected region of edges, which will
still exist after morphological operation. This is illustrated in
Figure 7(c).

The motion maps of the other procedures are shown in
Figures 7(d)–7(f). The initial detection result comes from the
combination of the three conditions. After the erosion pro-
cess, the detection noise is greatly reduced. The eroded re-
gion and some small motion holes are recovered by the di-
lation filter as in the final result of HMD. The final interpo-
lation result is shown in Figure 7(g). The excellent interpo-
lation of the edges and the fast gesture reveal the accuracy
and robustness of HMD. The small motion hole of the final
motion map is not obvious in the interpolated image due to
the small luminance difference between the two consecutive
fields. The interpolation result of 3FMA, with TH3FMA being
modified to eight, is shown in Figure 7(h) for comparison.
The motion missing of 3FMA leads to annoying line crawling
effect.

3.3. Experimental results of edge-pattern recognition

In this section, we show the comparison of five intra-
interpolation methods, including LA, 5-tap ELA [3], 5-tap
EELA [5], EPR without motion-adaptive prediction (MAP),
and EPR with MAP. EPR with MAP adaptively predicts b
and c, shown in Figure 4(a), from either LA or previous field,
while EPR without MAP always determine the two pixels by
LA. The EELA scheme in this section is the same algorithm

Table 3: PSNR of the intra-interpolation methods in dB.

LA ELA [3] EELA [5] EPR w/o
MAP

EPR with
MAP

Waves 32.32 31.29 32.05 31.85 32.72

Grass 34.45 31.49 33.31 32.86 33.45

Trees 26.33 25.73 25.95 25.91 25.90

Bricks
29.18 28.64 28.96 28.67 28.94

& T.

Average 30.57 29.29 30.07 29.82 30.25

used in 4FHMD with horizontal motion detection being dis-
abled. The sequence resolution in the following two experi-
ments is CIF.

The first experiment is to test the PSNR on different tex-
tures extracted from the video sequences. Figure 8 shows the
extracted regions including waves, grass, trees, and bricks
and trees. The extracted scenes are moving or partially mov-
ing, in which intra-interpolation will be adopted. The com-
parison is shown in Table 3. LA can be considered as a
conservative method for textural scenes. ELA was primar-
ily designed for edge interpolation. With the expectation of
edge misjudgments in complex textures, the performance
of ELA is the worst among all algorithms. In EELA, LA is
used in textural scenes whenever the dominate edge direc-
tion cannot be found. Therefore, the performance of EELA
is close to that of LA in some cases. EPR without MAP is
always better than the ELA in this experiment. The per-
formance becomes even better when motion detection is
used to predict the neighboring pixels. Significant improve-
ment can be observed in the semimotion scene like waves.
The overall PSNR of EPR with MAP is better than that of
EELA.

The second experiment is to test the ability of edge inter-
polation. In the results shown in Figure 9, interpolation with
LA introduces edge jaggedness while EPR, ELA, and EELA
preserve the edge sharpness. The accurate edge interpolation
of EPR is contributed by its corner pattern. The neighboring
pixels of the edges are detected as stationary in this exam-
ple, making the interpolation result of EPR with MAP more
accurate.

The performance of the intra-interpolation algorithms
can be discussed in the following cases. LA has the highest
PSNR in purely moving and textural scenes due to its conser-
vative way of interpolation. With the incorporation of tem-
poral information in semimoving scenes, our EPR performs
better than LA and EELA. EPR, ELA, and EELA can all handle
edges. Interpolation of textures is the weakness of ELA while
edges defeat LA. EELA, which adaptively switches between
ELA and LA, is capable of interpolating edges and textures.
EPR has the same adaptive ability and is better than EELA
due to more flexible interpolation schemes contributed by
pattern analysis for complex textures and also the aid of
more information provided by MAP. Hence, the content-
adaptability is the advantage of EPR against LA and ELA, and
EELA.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7: The results of motion detector. (a) Motion map of the 1st condition, (b) motion map of the 2nd condition, (c) motion map of
the 3rd condition, (d) output of HMD, (e) eroded motion map, (f) final motion map by dilation, (g) interpolation result of the proposed
algorithm, (h) interpolation result of 3-field motion detection.

(a) (b) (c)

Figure 8: Extracted textures from video sequences. (a) Coastguard,
343rd picture, (b) vectra-color, 92nd picture, (c) foreman, 244th
picture.

3.4. Deinterlacingwithmotion detection and EPR

Figures 10 and 11 show the visual quality of cropped Stefan in
PAL resolution. The 50th field of Stefan contains stationary
background and the moving player, which is suitable to high-
light the accuracy of the different motion detectors. In par-
ticular, the fast movement of the racket, which only appears
at the same position for only one picture, is very difficult to
detect. In Figure 10, LA produces the blurred background
and edges, and FI introduces line crawl on the player as a
result of no motion-adaptive scheme. Textures in the back-
ground cause false motion detection of 2FMA, which lead to

blurred vertical details. 3FMA cannot detect the movement
of the player, especially the fast-moving racket, leaving many
motion holes on the player. Although there is some motion
missing in 4FTD, vertical-temporal median filter will adopt
intra-pixels in this case and thus eliminate the motion holes.
However, the regions detected as moving, such as Stefan’s
hands, are interpolated by vertical-temporal linear filter. Un-
fortunately, involving temporal pixels in moving regions still
causes line crawl. 4FHMD provides a good detection result
in the background. But the misjudgment of horizontal mo-
tion direction causes line crawling and also “pepper & salt”
noises. HMDEPR shows accurate motion detection results in
both stationary background and moving foreground, which
preserves the integrity of the background textures and edges
and also minimizes the motion holes of the foreground.

In Figure 11, the entire 194th field of Stefan with textures
is moving and is used to compare the visual quality of tex-
tures interpolated by LA and HMDEPR. HMDEPR performs
accurate motion detection as well as sharper edge and tex-
ture interpolation than LA does, and also exhibits the same
quality for the textures without apparent edges.

We also present objective algorithm comparison of
CIF video sequences in Table 4. The scenes with mov-
ing foregrounds and the stationary backgrounds, including
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(a) (b) (c)

(d) (e)

Figure 9: Visual quality of intra-interpolation methods. (a) LA, (b) ELA, (c) EELA, (d) proposed EPR without MAP, (e) proposed EPR with
MAP.

Hall-monitor, Silent, and Mother & daughter, are similar to
50th field of Stefan, whose aforementioned analysis can be
used to explain the PSNR’s of these three sequences. In the
sequence Hall-monitor, LA has the lowest PSNR, since LA
turns the noises in Hall-monitor into large-area flickering.
3FMA exhibits higher PSNR than HMDEPR due to some
false motion introduced by the dilation filter. HMDEPR pro-
vides the best result in foreman, as it performs correct mo-
tion detection of fast motion, sharp edge interpolation, and
good interpolation of semimoving bricks and trees.

The intra-interpolation is very important in the se-
quences with global motion such as bus, coastguard, mobile,
Stefan, and vectra-color. The horizontal motion in coast-
guard favors dedicated 4FHMD. LA benefits the interpo-
lation of fast moving textures, which appear in bus and
Stefan, All motion-adaptive algorithms, even 2FMA, suffer
from motion missing problem in these two sequences. Our
HMDEPR retains a better result than the other motion-
adaptive algorithms because of the smaller motion missing
ratio and the aids of EPR for texture interpolation. Vectra-
color contains not only fast global motion but also many
sharp edges, which makes HMDEPR better than LA. The
slow motion of mobile benefits 3FMA, enabling the most ac-
curate motion detection without false motion. Although LA
sometimes outperforms HMDEPR in the fast moving scene,
HMDEPR still possess the capability in interpolating edges as
discussed in Section 3.3 and indicated in Figure 11. The aver-
age PSNR of HMDEPR is the highest among all algorithms,
which explains the robustness and content-adaptability of
HMDEPR.

4. CONCLUSION

This paper presents a novel motion-adaptive deinterlacer
which incorporates new hybrid motion detection and the
edge-pattern recognition for intra-interpolation. The hybrid
motion detector, which combines the benefits of 2-field and
3-field motion detection, is capable of detecting slow motion,
fast motion, and the motion of edges with high accuracy.
The edge-pattern recognition algorithm performs local scene
analysis and adaptive interpolation, and thus achieves suc-
cessful interpolation of textures and edges which cannot be
accomplished by using LA or ELA along. The edge-pattern
recognition also introduces the feasibility of using motion-
adaptive method in not only pixel interpolation but also pixel
prediction for scene analysis.

We compare our deinterlacing algorithm to six algo-
rithms, including two recently published algorithms with 4-
field motion detection. Versatile video contents, which in-
clude stationary textures, moving textures, fast motion, and
edges are adequately processed by our algorithm as indi-
cated in the comparison of visual quality. The key concept
of motion-adaptive deinterlacing is to adaptively accommo-
date stationary and moving contents. The PSNR of our dein-
terlacer on versatile sequences demonstrates higher robust-
ness than the other motion-adaptive algorithms. Moreover,
with better performance than the 4-field motion-adaptive al-
gorithms, our algorithm only needs the data of three fields,
which reduces the memory cost in VLSI implementation.
The cost and performance comparison justifies the efficiency
and content-adaptability of our algorithm.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 10: Visual quality of 50th frame of Stefan. (a) LA, (b) FI, (c) 2FMA, (d) 3FMA, (e) 4FTD, (f) 4FHMD, (g) proposed HMDEPR.

(a) (b)

Figure 11: Visual quality of 194th frame of Stefan. (a) LA, (b) proposed HMDEPR.
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Table 4: PSNR of the deinterlacing algorithms in dB.

Total picture number LA FI 2FMA 3FMA 4FTD [21] 4FHMD [5] HMDEPR

Bus 150 28.19 20.60 26.83 25.37 26.86 25.24 26.87

Coastguard 300 28.67 27.27 28.43 29.91 29.63 30.41 29.13

Foreman 300 32.39 28.74 31.34 32.42 32.50 32.84 33.93

Hall monitor 300 31.76 36.70 32.49 39.58 35.07 36.69 38.79

Mobile 300 25.47 23.49 25.21 26.70 25.99 24.55 24.67

M&D 300 39.20 40.54 39.02 42.59 41.90 40.91 43.23

Silent 300 33.80 34.42 35.93 39.31 37.95 38.68 41.10

Stefan 300 27.46 21.01 26.59 25.82 25.83 25.56 26.88

Vectra-color 142 26.63 22.28 26.42 25.69 27.05 26.75 27.31

Average 30.40 28.34 30.25 31.93 31.42 31.29 32.43
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