Open Access

Spatial-Aided Low-Delay Wyner-Ziv Video Coding

EURASIP Journal on Image and Video Processing20092009:109057

DOI: 10.1155/2009/109057

Received: 6 May 2008

Accepted: 12 January 2009

Published: 1 April 2009


In distributed video coding, the side information (SI) quality plays an important role in Wyner-Ziv (WZ) frame coding. Usually, SI is generated at the decoder by the motion-compensated interpolation (MCI) from the past and future key frames under the assumption that the motion trajectory between the adjacent frames is translational with constant velocity. However, this assumption is not always true and thus, the coding efficiency for WZ coding is often unsatisfactory in video with high and/or irregular motion. This situation becomes more serious in low-delay applications since only motion-compensated extrapolation (MCE) can be applied to yield SI. In this paper, a spatial-aided Wyner-Ziv video coding (WZVC) in low-delay application is proposed. In SA-WZVC, at the encoder, each WZ frame is coded as performed in the existing common Wyner-Ziv video coding scheme and meanwhile, the auxiliary information is also coded with the low-complexity DPCM. At the decoder, for the WZ frame decoding, auxiliary information should be decoded firstly and then SI is generated with the help of this auxiliary information by the spatial-aided motion-compensated extrapolation (SA-MCE). Theoretical analysis proved that when a good tradeoff between the auxiliary information coding and WZ frame coding is achieved, SA-WZVC is able to achieve better rate distortion performance than the conventional MCE-based WZVC without auxiliary information. Experimental results also demonstrate that SA-WZVC can efficiently improve the coding performance of WZVC in low-delay application.

Publisher note

To access the full article, please see PDF.

Authors’ Affiliations

Digital Media Research Center, Institute of Computing Technology, Chinese Academy of Science
Department of Automation, Tsinghua University
Department of Computer Science, Harbin Institute of Technology
Institute of Digital Media, School of Electronic Engineering and Computer Science, Peking University


© Bo Wu et al. 2009

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.