Open Access

Joint Source-Channel Coding for Wavelet-Based Scalable Video Transmission Using an Adaptive Turbo Code

EURASIP Journal on Image and Video Processing20072007:047517

DOI: 10.1155/2007/47517

Received: 20 August 2006

Accepted: 5 January 2007

Published: 28 March 2007

Abstract

An efficient approach for joint source and channel coding is presented. The proposed approach exploits the joint optimization of a wavelet-based scalable video coding framework and a forward error correction method based on turbo codes. The scheme minimizes the reconstructed video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the source rate distortion characteristics and the statistics of the available codes. Here, the critical problem of estimating the bit error rate probability in error-prone applications is discussed. Aiming at improving the overall performance of the underlying joint source-channel coding, the combination of the packet size, interleaver, and channel coding rate is optimized using Lagrangian optimization. Experimental results show that the proposed approach outperforms conventional forward error correction techniques at all bit error rates. It also significantly improves the performance of end-to-end scalable video transmission at all channel bit rates.

[1234567891011121314151617181920212223242526272829]

Authors’ Affiliations

(1)
Electronic Engineering Department, Queen Mary University of London

References

  1. Verdü S: Fifty years of Shannon theory. IEEE Transactions on Information Theory 1998,44(6):2057-2078. 10.1109/18.720531View ArticleGoogle Scholar
  2. Zhang Q, Zhu W, Zhang Y-Q: Channel-adaptive resource allocation for scalable video transmission over 3G wireless network. IEEE Transactions on Circuits and Systems for Video Technology 2004,14(8):1049-1063. 10.1109/TCSVT.2004.831966View ArticleGoogle Scholar
  3. Cheung G, Zakhor A: Bit allocation for joint source/channel coding of scalable video. IEEE Transactions on Image Processing 2000,9(3):340-356. 10.1109/83.826773View ArticleGoogle Scholar
  4. Kim J, Mersereau RM, Altunbasak Y: Error-resilient image and video transmission over the Internet using unequal error protection. IEEE Transactions on Image Processing 2003,12(2):121-131. 10.1109/TIP.2003.809006View ArticleGoogle Scholar
  5. Kondi LP, Ishtiaq F, Katsaggelos AK: Joint source-channel coding for motion-compensated DCT-based SNR scalable video. IEEE Transactions on Image Processing 2002,11(9):1043-1052. 10.1109/TIP.2002.802507View ArticleGoogle Scholar
  6. van der Schaar M, Radha H: Unequal packet loss resilience for fine-granular-scalability video. IEEE Transactions on Multimedia 2001,3(4):381-394. 10.1109/6046.966110View ArticleGoogle Scholar
  7. Mohr AE, Riskin EA, Ladner RE: Unequal loss protection: graceful degradation of image quality over packet erasure channels through forward error correction. IEEE Journal on Selected Areas in Communications 2000,18(6):819-828. 10.1109/49.848236View ArticleGoogle Scholar
  8. Ruf MJ, Modestino JW: Operational rate-distortion performance for joint source and channel coding of images. IEEE Transactions on Image Processing 1999,8(3):305-320. 10.1109/83.748887View ArticleGoogle Scholar
  9. He Z, Cai J, Chen CW: Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding. IEEE Transactions on Circuits and Systems for Video Technology 2002,12(6):511-523. 10.1109/TCSVT.2002.800313View ArticleGoogle Scholar
  10. Gallant M, Kossentini F: Rate-distortion optimized layered coding with unequal error protection for robust internet video. IEEE Transactions on Circuits and Systems for Video Technology 2001,11(3):357-372. 10.1109/76.911161View ArticleGoogle Scholar
  11. Sprljan N, Mrak M, Izquierdo E: A fast error protection scheme for transmission of embedded coded images over unreliable channels and fixed packet size. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 3: 741-744.Google Scholar
  12. Thomos N, Boulgouris NV, Strintzis MG: Wireless image transmission using turbo codes and optimal unequal error protection. IEEE Transactions on Image Processing 2005,14(11):1890-1901.View ArticleGoogle Scholar
  13. Thie J, Taubman D: Optimal erasure protection strategy for scalably compressed data with tree-structured dependencies. IEEE Transactions on Image Processing 2005,14(12):2002-2011.MathSciNetView ArticleGoogle Scholar
  14. Hamzaoui R, Stankovic V, Zixiang X: Optimized error protection of scalable image bit streams [advances in joint source-channel coding for images]. IEEE Signal Processing Magazine 2005,22(6):91-107.View ArticleGoogle Scholar
  15. Banister BA, Belzer B, Fischer TR: Robust video transmission over binary symmetric channels with packet erasures. Proceedings of Data Compression Conference (DCC '02), April 2002, Snowbird, Utah, USA 162-171.Google Scholar
  16. Barmada B, Ghandi MM, Jones EV, Ghanbari M: Combined turbo coding and hierarchical QAM for unequal error protection of H.264 coded video. Signal Processing: Image Communication 2006,21(5):390-395. 10.1016/j.image.2006.01.001Google Scholar
  17. Luna CE, Eisenberg Y, Berry R, Pappas TN, Katsaggelos AK: Joint source coding and data rate adaptation for energy efficient wireless video streaming. IEEE Journal on Selected Areas in Communications 2003,21(10):1710-1720. 10.1109/JSAC.2003.815394View ArticleGoogle Scholar
  18. Mrak M, Sprljan N, Zgaljic T, Ramzan N, Wan S, Izquierdo E: Performance evidence of software proposal for Wavelet Video Coding Exploration group. ISO/IEC JTC1/SC29/WG11/MPEG2006/M13146, 76th MPEG Meeting, April 2006, Montreux, SwitzerlandGoogle Scholar
  19. Berrou C, Glavieux A: Near optimum error correcting coding and decoding: turbo-codes. IEEE Transactions on Communications 1996,44(10):1261-1271. 10.1109/26.539767View ArticleGoogle Scholar
  20. Zgaljic T, Sprljan N, Izquierdo E: Bitstream syntax description based adaptation of scalable video. Proceedings of 2nd European Workshop on the Integration of Knowledge, Semantics and Digital Media Technology (EWIMT '05), November-December 2005, London, UK 173-178.View ArticleGoogle Scholar
  21. Mrak M, Sprljan N, Izquierdo E: Motion estimation in temporal subbands for quality scalable motion coding. Electronics Letters 2005,41(19):1050-1051. 10.1049/el:20052863View ArticleGoogle Scholar
  22. Douillard C, Berrou C: Turbo codes with rate- m /( m +1) constituent convolutional codes. IEEE Transactions on Communications 2005,53(10):1630-1638. 10.1109/TCOMM.2005.857165View ArticleGoogle Scholar
  23. Berrou C, Vaton S, Jézéquel M, Douillard C: Computing the minimum distance of linear codes by the error impulse method. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '02), November 2002, Taipei, Taiwan 2: 1017-1020.Google Scholar
  24. Ould-Cheikh-Mouhamedou Y, Crozier S: Comparison of distance measurement methods for turbo codes. Proceedings of Canadian Workshop on Information Theory (CWIT '05), June 2005, Montréal, Quebec, Canada 36-39.Google Scholar
  25. Robertson P, Hoeher P, Villeburn E: Optimal and suboptimal maximum a posterioi algorithms suitable for turbo decoding. European Transactions on Telecommunications 1997, 8: 119-125. 10.1002/ett.4460080202View ArticleGoogle Scholar
  26. Berrou C, Saouter Y, Douillard C, Kerouédan S, Jézéquel M: Designing good permutations for turbo codes: towards a single model. Proceedings of IEEE International Conference on Communications (ICC '04), June 2004, Paris, France 1: 341-345.Google Scholar
  27. Crozier S, Guinand P: High-performance low-memory interleaver banks for turbo-codes. Proceedings of 54th IEEE Vehicular Technology Conference (VTC '01), October 2001, Atlantic City, NJ, USA 4: 2394-2398.Google Scholar
  28. Leonardi R, Brangoulo S, Mark M, Wien M, Xu J: Description of testing in wavelet video coding. ISO/IEC JTC1/SC29/WG11/MPEG2006/N7823, 75th MPEG Meeting, January 2006, Bangkok, ThailandGoogle Scholar
  29. Zhou G, Lin T-S, Wang W, et al.: On the concatenation of turbo codes and Reed-Solomon codes. Proceedings of IEEE International Conference on Communications (ICC '93), May 2003, Anchorage, Alaska, USA 3: 2134-2138.Google Scholar

Copyright

© Naeem Ramzan et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.